Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
Resposta:
Uma equação do segundo grau é completa, se todos os coeficientes a, b e c são diferentes de zero.
Exemplos:
2 x² + 7x + 5 = 0
3 x² + x + 2 = 0
Equação incompleta do segundo grau
Uma equação do segundo grau é incompleta se b=0 ou c=0 ou b=c=0. Na equação incompleta o coeficiente a é diferente de zero.
Exemplos:
4 x² + 6x = 0
3 x² + 9 = 0
2 x² = 0
Resolução de equações incompletas do 2o. grau
Equações do tipo ax²=0: Basta dividir toda a equação por a para obter:
x² = 0
significando que a equação possui duas raízes iguais a zero.
Equações do tipo ax²+c=0: Novamente dividimos toda a equação por a e passamos o termo constante para o segundo membro para obter:
x² = -c/a
Se -c/a for negativo, não existe solução no conjunto dos números reais.
Se -c/a for positivo, a equação terá duas raízes com o mesmo valor absoluto (módulo) mas de sinais contrários.
Equações do tipo ax²+bx=0: Neste caso, fatoramos a equação para obter:
x (ax + b) = 0
e a equação terá duas raízes:
x' = 0 ou x" = -b/a
Exemplos gerais
4x²=0 tem duas raízes nulas.
4x²-8=0 tem duas raízes: x'=R[2], x"= -R[2]
4x²+5=0 não tem raízes reais.
4x²-12x=0 tem duas raízes reais: x'=3, x"=0
Exercícios: Resolver as equações incompletas do segundo grau.
x² + 6x = 0
2 x² = 0
3 x² + 7 = 0
2 x² + 5 = 0
10 x² = 0
9 x² - 18 = 0
não sei se tá certo mas espero ter ajudado ❤️
Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.