O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.

Seja f a função real definida por f(x) = 2x - 1. Determine todos os valores de m ∈ Reais para os quais é válida a igualdade:

[tex]f(m^{2}) - 2 f(m) + f(2m) = \frac{m}{2}[/tex]

Preciso da explicação


Sagot :

[tex]\displaystyle f(x)=2x-1\\\\f(m^2)-2f(m)+f(2m)=\frac{m}{2}\\\\2m^2-1-2(2m-1)+2\cdot 2m-1=\frac{m}{2}\\\\2m^2-2-4m+2+4m=\frac{m}{2}\\\\2m^2=\frac{m}{2}\\\\4m^2=m\\\\4m^2-m=0\\\\\\x=\frac{-b\pm\sqrt{\Delta}}{2a}\\\\x=\frac{-(-1)\pm\sqrt{b^2-4ac}}{2\cdot 4}\\\\x=\frac{1\pm\sqrt{(-1)^2-4\cdot 4 \cdot 0}}{8}\\\\x=\frac{1\pm\sqrt{1}}{8}\\\\x=\frac{1\pm 1}{8}\\\\\\x_1=\frac{1+1}{8}=\frac{2}{8}=\frac{1}{4}\\\\x_2=\frac{1-1}{8}=\frac{0}{8}=0\\\\S=\left\{0, \frac{1}{4}\right\}[/tex]

Com isso, a igualdade é válida para m = 0 e m = 1/4.

Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.