O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas.

) No cubo de
aresta 10, da figura abaixo, encontra-se representado um plano
passando pelos vértices B e C e pelos pontos P e Q, pontos médios,
respectivamente, das arestas EF e HG, gerando o quadrilátero BCQP.


A área do quadrilátero BCQP, da figura acima, é
(A) 25√5.
(B) 50√2.
(C) 50√5.
(D)100√2 .
(E) 100√5.


No Cubo De Aresta 10 Da Figura Abaixo Encontrase Representado Um Plano Passando Pelos Vértices B E C E Pelos Pontos P E Q Pontos Médios Respectivamente Das Are class=

Sagot :

zuh66

Explicação passo-a-passo:

Ja sabemos que o BC vale 10, pois é uma aresta do cubo.note que os pontos CQG formam um triângulo retandula, onde a hipotenusa é altura do quadrilátero em questão

Como Q é ponto médio da aresta GH temos que GQ vale 5, então temos um triângulo retângulo com catetos iguais a 10 e 5, aplicando então o Teorema de Pitágoras:

CQ^2 = 10^2 + 5^2

CQ^2 = 125

CQ= 5 (RAIS QUADRADA)5

Assim, a área do quadrilátero BCQP é:

A=10 * 5(rais quadrada) 5

A=50 (rais quadrada)5

Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.