Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.

) No cubo de
aresta 10, da figura abaixo, encontra-se representado um plano
passando pelos vértices B e C e pelos pontos P e Q, pontos médios,
respectivamente, das arestas EF e HG, gerando o quadrilátero BCQP.


A área do quadrilátero BCQP, da figura acima, é
(A) 25√5.
(B) 50√2.
(C) 50√5.
(D)100√2 .
(E) 100√5.

No Cubo De Aresta 10 Da Figura Abaixo Encontrase Representado Um Plano Passando Pelos Vértices B E C E Pelos Pontos P E Q Pontos Médios Respectivamente Das Are class=

Sagot :

zuh66

Explicação passo-a-passo:

Ja sabemos que o BC vale 10, pois é uma aresta do cubo.note que os pontos CQG formam um triângulo retandula, onde a hipotenusa é altura do quadrilátero em questão

Como Q é ponto médio da aresta GH temos que GQ vale 5, então temos um triângulo retângulo com catetos iguais a 10 e 5, aplicando então o Teorema de Pitágoras:

CQ^2 = 10^2 + 5^2

CQ^2 = 125

CQ= 5 (RAIS QUADRADA)5

Assim, a área do quadrilátero BCQP é:

A=10 * 5(rais quadrada) 5

A=50 (rais quadrada)5

Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.