O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
Olá, Colunista Social (kkk que avatar é esse ?!).
Os possíveis números formados pela combinação de três algarismos distintos dentre os escolhidos no conjunto {a,b,c,d} são, em ordem alfabética:
[tex]\text{6 possibilidades}\begin{cases}a\ b\ c\\ a\ b\ d\\ \vdots\\ a\ d\ c\\ \end{cases}\\ \text{6 possibilidades}\begin{cases}b\ a\ c\\ b\ a\ d\\ \vdots\\ b\ d\ c\\ \end{cases}\\ \vdots\\ \text{6 possibilidades}\begin{cases}d\ a\ b\\ d\ a\ c\\ \vdots\\ d\ c\ b\\ \end{cases}\\[/tex]
Podemos verificar no demonstrativo acima que o algarismo [tex]a[/tex] aparece 6 vezes na coluna das unidades, 6 vezes na coluna das dezenas e 6 vezes na coluna das centenas. O mesmo acontece com os algarismos [tex]b, c, d[/tex], os quais também aparecem 6 vezes nas colunas das unidades, das dezenas e das centenas.
Somando, portanto, todos estes números construídos na forma demonstrada obteremos o seguinte resultado:
[tex]\text{Soma = }\underbrace{100\times(6a+6b+6c+6d)}_{centenas} +\underbrace{10\times(6a+6b+6c+6d)}_{dezenas}+\\\\+\underbrace{1\times(6a+6b+6c+6d)}_{unidades}=\\\\ =600(a+b+c+d)+60(a+b+c+d)+6(a+b+c+d)=\\\\ =666(a+b+c+d)=\\\\ =111 \times6(a+b+c+d)[/tex]
Fica demonstrado, portanto, que a soma destes números é um múltiplo de 111.
OLÁ COLUNISTA!!!
COMO SÃO 4 ALGARISMOS ( A,B,C,D) , E TEMOS QUE FORMAR NÚMEROS DE 3 ALGARISMOS DISTINTOS
TEMOS 4.3.2 DE POSSIBILIDADES OU SEJA APENAS 24 NÚMEROS.
COMO SÃO POUCOS VOU FAZER TODOS E SOMA-LOS
ABC
ABD
ACB
ACD
ADB
ADC
BAC
BAD
BCA
BCD
BDA
BDC
CAB
CAD
CBA
CBD
CDA
CDB
DAB
DAC
DBA
DBC
DCA
DCB
DEVEMOS PERCEBER QUE EM CADA COLUNA TEMOS 6 LETRAS DE CADA.
ASSIM: NA COLUNA DAS UNIDADES TEREMOS 6A+6B+6C+6D = 6(A+B+C+D)
NA COLUNA DAS DEZENAS : 6.10A+6.10B+6.10C+6.10D = 60.(A+B+C+D)
NA COLUNA DAS CENTENAS: 6.100A+6.100B+6.100C+6.100D = 600.(A+B+C+D)
Ao somarmos tudo :
600.(A+B+C+D)+60(A+B+C+D)+ 6.(A+B+C+D)
colocaremos (A+B+C+D) EM EVIDÊNCIA
(A+B+C+D)[ 600+60+6] = (A+B+C+D).666
QUE PODEMOS ESCREVER COMO 111. 6((A+B+C+D) LOGO É MÚLTIPLO DE 111.
ESPERO TER AJUDADO
Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.