Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha respostas rápidas para suas perguntas de uma rede de profissionais experientes em nossa plataforma de perguntas e respostas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Olá, Colunista Social (kkk que avatar é esse ?!).
Os possíveis números formados pela combinação de três algarismos distintos dentre os escolhidos no conjunto {a,b,c,d} são, em ordem alfabética:
[tex]\text{6 possibilidades}\begin{cases}a\ b\ c\\ a\ b\ d\\ \vdots\\ a\ d\ c\\ \end{cases}\\ \text{6 possibilidades}\begin{cases}b\ a\ c\\ b\ a\ d\\ \vdots\\ b\ d\ c\\ \end{cases}\\ \vdots\\ \text{6 possibilidades}\begin{cases}d\ a\ b\\ d\ a\ c\\ \vdots\\ d\ c\ b\\ \end{cases}\\[/tex]
Podemos verificar no demonstrativo acima que o algarismo [tex]a[/tex] aparece 6 vezes na coluna das unidades, 6 vezes na coluna das dezenas e 6 vezes na coluna das centenas. O mesmo acontece com os algarismos [tex]b, c, d[/tex], os quais também aparecem 6 vezes nas colunas das unidades, das dezenas e das centenas.
Somando, portanto, todos estes números construídos na forma demonstrada obteremos o seguinte resultado:
[tex]\text{Soma = }\underbrace{100\times(6a+6b+6c+6d)}_{centenas} +\underbrace{10\times(6a+6b+6c+6d)}_{dezenas}+\\\\+\underbrace{1\times(6a+6b+6c+6d)}_{unidades}=\\\\ =600(a+b+c+d)+60(a+b+c+d)+6(a+b+c+d)=\\\\ =666(a+b+c+d)=\\\\ =111 \times6(a+b+c+d)[/tex]
Fica demonstrado, portanto, que a soma destes números é um múltiplo de 111.
OLÁ COLUNISTA!!!
COMO SÃO 4 ALGARISMOS ( A,B,C,D) , E TEMOS QUE FORMAR NÚMEROS DE 3 ALGARISMOS DISTINTOS
TEMOS 4.3.2 DE POSSIBILIDADES OU SEJA APENAS 24 NÚMEROS.
COMO SÃO POUCOS VOU FAZER TODOS E SOMA-LOS
ABC
ABD
ACB
ACD
ADB
ADC
BAC
BAD
BCA
BCD
BDA
BDC
CAB
CAD
CBA
CBD
CDA
CDB
DAB
DAC
DBA
DBC
DCA
DCB
DEVEMOS PERCEBER QUE EM CADA COLUNA TEMOS 6 LETRAS DE CADA.
ASSIM: NA COLUNA DAS UNIDADES TEREMOS 6A+6B+6C+6D = 6(A+B+C+D)
NA COLUNA DAS DEZENAS : 6.10A+6.10B+6.10C+6.10D = 60.(A+B+C+D)
NA COLUNA DAS CENTENAS: 6.100A+6.100B+6.100C+6.100D = 600.(A+B+C+D)
Ao somarmos tudo :
600.(A+B+C+D)+60(A+B+C+D)+ 6.(A+B+C+D)
colocaremos (A+B+C+D) EM EVIDÊNCIA
(A+B+C+D)[ 600+60+6] = (A+B+C+D).666
QUE PODEMOS ESCREVER COMO 111. 6((A+B+C+D) LOGO É MÚLTIPLO DE 111.
ESPERO TER AJUDADO
Obrigado por confiar em nós com suas perguntas. Estamos aqui para ajudá-lo a encontrar respostas precisas de forma rápida e eficiente. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.