Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas e conecte-se com profissionais prontos para fornecer respostas precisas para suas dúvidas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
⠀
[tex]\huge\green{\boxed{\blue{\sf~~~S = \{-3 ,-4\}~~~}}}[/tex]
⠀
[tex]\bf\large\green{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad}}[/tex]
[tex]\green{\rm\underline{EXPLICAC_{\!\!\!,}\tilde{A}O\ PASSO{-}A{-}PASSO\ \ \ }}[/tex]✍
❄☃ [tex]\sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀
⠀
☺lá, Gabriel, como tens passado nestes tempos de quarentena⁉ E os estudos à distância, como vão⁉ Espero que bem❗ Confira abaixo a manipulação algébrica para encontrarmos nossas raízes e após a resposta final confira um resumo sobre Funções Polinomiais de Segundo Grau e também um link com um resumo sobre Monômios e Polinômios que acredito que te ajudarão a entender não só a resolução abaixo como também outros exercícios envolvendo este tipo de função. ✌
⠀
[tex]\Large\gray{\boxed{\blue{\sf F(x) = \pink{1}x^2 + \green{7}x + \gray{12} = 0}}}[/tex]
⠀
[tex]\LARGE\pink{\text{$\rm \Longrightarrow~~a = 1$}}[/tex]
[tex]\LARGE\green{\text{$\rm \Longrightarrow~~b = 7$}}[/tex]
[tex]\LARGE\gray{\text{$\rm \Longrightarrow~~c = 12$}}[/tex]
⠀
➡ [tex]\Large\blue{\text{$\rm \Delta = 7^2 - 4 \cdot 1 \cdot 12$}}[/tex]
[tex]\Large\blue{\text{$\rm = 49 - 48$}}[/tex]
[tex]\Large\blue{\text{$\rm = 1$}}[/tex]
⠀
☔ Como Δ>0 então teremos duas raízes, ou seja, nossa parábola irá cruzar com o eixo x em dois pontos
⠀
[tex]\begin{cases}\large\blue{\text{$\rm x_{1} = \dfrac{-7 + \sqrt{1}}{2 \cdot 1} = \dfrac{-7 + 1}{2} = -3$}}\\\\\\\large\blue{\text{$\rm x_{2} = \dfrac{-7 - \sqrt{1}}{2 \cdot 1} = \dfrac{-7 - 1}{2} = -4$}}\end{cases}[/tex]
⠀
[tex]\huge\green{\boxed{\blue{\sf~~~S = \{-3 ,-4\}~~~}}}[/tex] ✅
⠀
⠀
⠀
⠀
_______________________________
[tex]\large\red{\text{$\sf FUNC_{\!\!\!,}\tilde{O}ES~DE~SEGUNDO~GRAU$}}[/tex]
_______________________________
⠀
☔ O que significa, afinal, “encontrar as raízes” de uma equação? Significa encontrar os valores de x para que f(x) seja igual a zero, ou seja, os valores de x em que nossa função “cruza” com o eixo das abscissas (x).
⠀
☔ Chamamos de Fórmula de Bháskara a resolução para encontrar as raízes de uma equação polinomial de segundo grau, dada na forma
⠀
[tex]\Large\red{\boxed{\pink{\boxed{\begin{array}{rcl} & & \\ & \orange{\sf f(x) = a \cdot x^2 + b \cdot x + c} & \\ & & \\ \end{array}}}}}[/tex]
⠀
através de uma manipulação algébrica entre os coeficientes a, b, e c de tal forma que um valor Δ seja descoberto, sendo
⠀
[tex]\Large\red{\boxed{\pink{\boxed{\begin{array}{rcl} & & \\ & \orange{\sf \Delta = b^2 - 4 \cdot a \cdot c} & \\ & & \\ \end{array}}}}}[/tex]
⠀
☔ Este valor Δ pode nos dizer 3 coisas:
⠀
➡ Δ > 0 nos diz que o polinômio tem duas raízes definidas no conjunto dos Reais;
➡ Δ = 0 nos diz que o polinômio tem somente uma raiz definida no conjunto dos Reais;
➡ Δ < 0 nos diz que o polinômio não tem nenhuma raiz definida no conjunto dos Reais;
⠀
☔ Com o valor de Δ, nosso delta (ou também chamado de discriminante) em mãos podemos então encontrar o valor de nossa raiz através da equação
⠀
[tex]\Large\red{\boxed{\pink{\boxed{\begin{array}{rcl} & & \\ & \orange{\sf x = \dfrac{-b \pm \sqrt{\Delta}}{2 \cdot a}} & \\ & & \\ \end{array}}}}}[/tex]
⠀
[tex]\Large\begin{cases}\orange{\sf x_{1}= \dfrac{-b + \sqrt{\Delta}}{2 \cdot a}}\\\\\\ \orange{\sf x_{2}= \dfrac{-b - \sqrt{\Delta}}{2 \cdot a}}\end{cases}[/tex]
⠀
☔ Temos também que a parábola formada por essa função terá um vértice no ponto [tex]\sf (x_m, y_m)[/tex] que será um ponto mínimo em y caso a > 0 (quando a concavidade da parábola está voltada para cima) ou máximo em y caso a < 0 (quando a concavidade da parábola está voltada para baixo) tais que
⠀
[tex]\Large\red{\boxed{\pink{\boxed{\begin{array}{rcl} & & \\ & \orange{\sf P_m = \left(\dfrac{-b}{2 \cdot a}, \dfrac{-\Delta}{4 \cdot a}\right)} & \\ & & \\ \end{array}}}}}[/tex]
⠀
☔ Lembrando também que o coeficiente c é o valor de y em que nossa função intercepta o eixo das ordenadas (y).
⠀
✋ Curiosidade: só no Brasil chamamos este método de Fórmula de Bháskara, no resto do mundo é só Método para encontrar as raízes de uma equação de segundo grau mesmo. Nem sequer foi o matemático Bháskara, que viveu no século 12, quem inventou o método. Este já existia antes dele e tem sido aprimorado ao longo dos milênios por diversas culturas. ✋
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
✈ Sobre monômios e polinômios (https://brainly.com.br/tarefa/36005381)
[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]☁
☕ [tex]\bf\Large\blue{Bons\ estudos.}[/tex]
([tex]\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}[/tex]) ☄
[tex]\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX[/tex]✍
❄☃ [tex]\sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀
⠀
⠀
⠀
⠀
[tex]\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}[/tex]
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.