O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas.
Sagot :
Resposta:
estabelece uma condição para que uma curva algébrica plana, f = 0, definida sobre os racionais — isto é, com os argumentos x, y∈ℚ—, tenha infinitos pontos racionais —isto é, solução de f = 0, com x, y∈ℚ—, como por exemplo a circunferência.
Explicação passo-a-passo:
Espero ter ajudado!!!
VÊ SE AGORA AJUDEI!!
O último problema do milênio é um parente do Último Teorema de Fermat, aquele que levou mais de 300 anos para ser demonstrado e acabou sendo vencido pelo inglês Andrew Wiles em 1993 (a demonstração estava incompleta, mas, pouco tempo depois, Wiles conseguiu apresentar uma prova correta). O Último Teorema de Fermat diz que equações do tipo xn + yn = zn só têm soluções x, y e z se n = 2. traduzindo: um número elevado ao quadrado pode ser igual à soma de dois quadrados, mas nenhum número ao cubo é a soma de dois cubos, nenhum número à quarta é a soma de dois números à quarta e assim por diante De modo mais geral, foi provado, em 1970, que não existe um método para saber quando equações semelhantes às do Último Teorema de Fermat têm ou não solução (esse, aliás, era o décimo problema que Hilbert apresentou em 1900). “Mas, em casos especiais, é possível afirmar alguma coisa”, diz Wiles em sua apresentação a esse problema do milênio. A conjectura de Birch e Swinnerton-Dyer tenta justamente descrever alguns desses casos.
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.