O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
Resposta:
a) Raízes = { - 1/9 ; 1 } Vértice ( 4/9 ; - 25/9 )
b) Raízes = { 2 ; 18 } Vértice ( 10 ; - 64 )
c) Raizes = { - 1 } Vértice ( - 1 ; 0 )
( tem em anexo três ficheiros dos gráficos destas funções ;
para aceder clicar em "baixar pdf " )
Explicação passo-a-passo:
Enunciado:
Nas funções a seguir:
Calcule o vértice; Calcule as raízes; Construa o gráfico.
a) y = 9x² - 8x - 1
b) f(x)= x² –20x + 36
c) f(x)= x² + 2x + 1
Resolução:
a) y = 9x² - 8x - 1
Cálculo das raízes:
Usar fórmula de Bhaskara
x = ( - b ±√Δ ) /2a
a = 9
b = - 8
c = - 1
Δ = b² - 4 * a * c
Δ = ( - 8 )² - 4 * 9 * ( - 1 ) = 64 + 36 = 100
√Δ = √ 100 = 10
x' = (- ( - 8 ) + 10 ) / ( 2 * 9 )
x’ = ( 8 + 10 ) / 18
x’ = 18/18
x’ = 1
x'' = (- ( - 8 ) - 10 ) / 18
x’’ = ( 8 – 10 ) / 18
x’’ = - 2/18
x’’ = -1/9
Cálculo do vértice
Resolvendo usando duas etapas e duas pequenas fórmulas.
1ª etapa - Recolha de dados
y = 9x² - 8x - 1
a = 9
b = - 8
c = - 1
Δ = b² - 4 * a * c
Δ = ( - 8 )² - 4 * 9 * ( - 1 ) = 64 + 36 = 100
2ª Etapa - Calcular as coordenadas do vértice
Coordenada em "x"
x = - b /2a
x = - ( - 8 ) / ( 2 * 9 ) = 8 / 18 = 4 / 9
Coordenada em "y"
y = - Δ / 4a
y = - 100 / ( 4 * 9 ) = - 100 / 36 = - 25 / 9
Vértice ( 4/9 ; - 25/9 )
Gráfico ( ver ficheiro anexo )
b) y = x² –20 x + 36
Cálculo das raízes:
Usar fórmula de Bhaskara
x = ( - b ±√Δ ) /2a
a = 1
b = - 20
c = 36
Δ = b² - 4 * a * c
Δ = ( - 20 )² - 4 * 1 * 36 = 400 -144 = 256
√Δ = √ 256 = 16
x' = ( - ( - 20 ) + 16 ) / ( 2 * 1 )
x’ = ( 20 +16 ) / 2
x’ = 36/2
x’ = 18
x'' = ( - ( - 20 ) - 16 ) / 2
x'' = ( 20 - 16 ) / 2
x’’ = 4 / 2
x’’ = 2
Cálculo do vértice
Resolvendo usando duas etapas e duas pequenas fórmulas.
1ª etapa - Recolha de dados
a = 1
b = - 20
c = 36
Δ = 256
2ª Etapa - Calcular as coordenadas do vértice
Coordenada em "x"
x = - b /2a
x = - ( - 20 ) / ( 2 * 1 ) = 20 / 2 = 10
Coordenada em "y"
y = - Δ / 4a
y = - 256 / ( 4 * 1 ) = - 64
Vértice ( 10 ; - 64 )
Gráfico ( ver ficheiro anexo )
c) y = x² + 2x + 1
Cálculo das raízes:
Usar fórmula de Bhaskara
x = ( - b ±√Δ ) /2a
a = 1
b = 2
c = 1
Δ = b² - 4 * a * c
Δ = 2² - 4 * 1 * 1 = 0 quando Δ = 0 a função tem apenas uma raiz.
√Δ = √ 0 = 0
x' = ( - 2 + 0 ) / ( 2 * 1 )
x’ = - 2 /2
x’ = - 1
x'' = ( - 2 - 0 ) / ( 2 * 1 )
x’’ = - 1 uma só raiz
Cálculo do vértice
Resolvendo usando duas etapas e duas pequenas fórmulas.
1ª etapa - Recolha de dados
y = x² + 2x + 1
a = 1
b = 2
c = 1
Δ = 0
2ª Etapa - Calcular as coordenadas do vértice
Coordenada em "x"
x = - b /2a
x = - 2 /( 2 * 1 ) = - 2 /2 = - 1
Coordenada em "y"
y = - Δ / 4a
y = - 0 / 4 = 0
Vértice ( - 1 ; 0 )
Gráfico ( ver ficheiro anexo )
+++++++++++++++++++++++++
Sinais: ( * ) multiplicar ( / ) dividir
Nota : escrever f(x) ou "y" é a mesma coisa.
Nota: no ficheiros dos gráficos aparecem páginas em branco. Não há informação perdida
+++++++++++++++++++++++++++
Qualquer dúvida me contacte pelos comentários desta pergunta.
Procuro resolver com detalhe elevado para que quem vai aprender a
resolução a possa compreender otimamente bem.
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.