Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

calculos, anexei a imagem abaixo.

Calculos Anexei A Imagem Abaixo class=

Sagot :

skally

1) Para resolver essa questão precisamos saber alguns pontos:

- esse triângulo é pitagórico (quer dizer que ele segue o padrão 3,4,5 ou seja, muito provavelmente o valor da hipotenusa é 10, mas vou provar pela relação fundamental);

-formulas de sen, cos, tg e relação fundamental.

[tex]sen (x) = \frac{Cateto oposto}{hipotenusa}\\\\cos (x) = \frac{Cateto adjacente}{hipotenusa}\\\\\\tg (x) = \frac{Cateto oposto}{Cateto adjacente}\\\\\\[/tex]

Relação fundamental

a²+b²=c²

leia a e b como os catetos e c como hipotenusa.

Utilizando essa relação para descobrirmos a hipotenusa, temos:

[tex]6^{2} + 8^{2}= c^{2} \\36+64=c^{2}\\100=c^{2}\\c=\sqrt{100}\\c=10[/tex]

como eu havia dito acima, esse triangulo é pitagórico, dessa forma, a hipotenusa vale 10 e podemos calcular tudo agora.

É basicamente aplicação de fórmula e saber o referencial, nesse momento é α; assim:

sen α = [tex]\frac{CO}{H}=\frac{6}{10} = \frac{3}{5}[/tex]

cos α = [tex]\frac{CA}{H}=\frac{8}{10}=\frac{4}{5}[/tex]

tg α = [tex]\frac{CO}{CA}= \frac{6}{8}=\frac{3}{4}[/tex]

agora considerando β

sen β = [tex]\frac{CO}{H}=\frac{8}{10} = \frac{4}{5}[/tex]

cos β = [tex]\frac{CA}{H}=\frac{6}{10}=\frac{3}{5}[/tex]

tg β = [tex]\frac{CO}{CA}= \frac{8}{6}=\frac{4}{3}[/tex]

2) nessa questão precisamos saber o seguinte:

-relações de tg, sen, cos e relação fundamental.

para encontrar y (cateto oposto ao ângulo de 60º), vou utilizar a formula de tg

assim:

tg 60º = [tex]\frac{y}{7}[/tex] (a tg de 60º é um notável igual a [tex]\sqrt{3}[/tex])

[tex]\sqrt{3}=\frac{y}{7}\\y=7\sqrt{3}[/tex]

x é a hipotenusa, basta aplicarmos na relação fundamental, pois agora temos os dois catetos:

[tex](7^{2}) +(7\sqrt{3}) ^{2}= x^{2}\\49+147=x^{2} \\196=x^{2} \\x=14[/tex]

3)novamente vamos utilizar as relações trigonométricas

nesse caso, a altura da árvore é o cateto oposto e vamos chamá-lo de x, temos o ângulo (é notável) e temos o valor de cateto adjacente, ou seja, nossa melhor opção é usar a tangente:

[tex]tg30=\frac{x}{30}\\\frac{\sqrt{3} }{3}=\frac{x}{30}\\3x=30\sqrt{3}\\x=\frac{30\sqrt{3} }{3}\\x=10\sqrt{3} m[/tex]

ou seja, a altura da árvore vale 10√3m.

Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.