O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.
Sagot :
Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/37993602
Domínio e imagem de uma função
a partir do gráfico.
[tex]\boxed{\begin{array}{c}\sf Para~encontrar~o~dom\acute inio~da~func_{\!\!,}\tilde ao~a~partir\\\sf de~sua~representac_{\!\!,}\tilde ao~gr\acute afica\\\sf vemos~o~intervalo~de~onde~comec_{\!\!,}a\\\sf a~func_{\!\!,}\tilde ao~nos~limites~do~gr\acute afico~at\acute e~onde~termina\\\sf no~EIXO~X.\end{array}}[/tex]
[tex]\boxed{\begin{array}{c}\sf Para~encontrar~a~imagem~basta~ver~onde~comec_{\!\!,}a\\\sf e~onde~termina~o~gr\acute afico~NO~EIXO~Y\\\sf respeitando~os~limites~do~pr\acute oprio~gr\acute afico\end{array}}[/tex]
Crescimento e decrescimento de uma função
[tex]\boxed{\begin{array}{c}\sf Dizemos~que~uma~func_{\!\!,}\tilde ao~f:A\longrightarrow B~onde~y=f(x)\\\sf\acute e~crescente~no~conjunto~ A_1\subset A~se,para\\\sf dois~valores~quaisquer~x_1~e~x_2\in A_1\\\sf com~x_1<x_2,tivermos~f(x_1)<f(x_2)\\\sf resumindo: f~\acute e~crescente~quando:\\\sf (\forall~x_1,x_2)(x_1<x_2\implies f(x_1)<f(x_2))\end{array}}[/tex]
[tex]\boxed{\begin{array}{c}\sf f~\acute e~decrescente~quando\\\sf(\forall x_1,x_2)(x_1<x_2\implies f(x_1)> f(x_2))\end{array}}[/tex]
[tex]\tt a)~\sf analisando~o~gr\acute afico~no~eixo~x\\\sf vemos~que~inicia~em~-1~fechado~e~termina~em~4~fechado.\\\sf assim:\\\large\boxed{\boxed{\boxed{\boxed{\sf Dom~f(x)=\{x\in\mathbb{R}/-1\leq x\leq4\}}}}}[/tex]
[tex]\tt b)~\sf analisando~o~eixo~y,~vemos~que~comec_{\!\!,}a~em\\\sf -1~fechado~e~termina~em~3~aberto~assim:\\\large\boxed{\boxed{\boxed{\boxed{\sf Im~f(x)=\{y\in\mathbb{R}/-1\leq y<3\}}}}}[/tex]
[tex]\tt c)~\sf observe~o~intervalo [-1,1[.\\\sf perceba~que -1<1~e~que~f(-1)=1~e~f(1)=3\\\sf portanto~f(-1)<f(1)\implies func_{\!\!,}\tilde ao~\acute e~crescente~neste~intervalo.[/tex]
[tex]\tt d)~\sf observe~o~intervalo~]3,4].\\\sf note~que~3<4.~al\acute em~disso~f(3)=3~e~f(4)=-1\\\sf podemos~afirmar~que~f(3)>f(4)\implies func_{\!\!,}\tilde ao~\acute e~decrescente~neste~intervalo.[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.