Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

Q5. (UFAL) Resolva, no universo R, a equação
log3 x + log3 (x + 2) = 1.​


Sagot :

Vamos lá :

log₃ x + log₃ (x + 2) = 1

log₃ x.(x + 2) = 1

x.(x + 2) = 3¹

x² + 2x - 3 = 0

Δ = 2² - 4.1.(- 3) = 4 + 12 = 16       >>>√Δ = 4

x = (- 2 ± 4)/2

x = - 1 ± 2

x₁ = - 1 + 2 = 1

x₂ = - 1 - 2 = - 3       >>> Descarta!

Para este caso x = 1

Espero ter ajudado !!

Lliw01

Primeiro precisamos determinar a condição de existencia, como temos x no logaritimando precisamos ter

[tex]x>0[/tex]

[tex]x+2>0\Leftrightarrow x>-2[/tex]

Logo basta ter [tex]x>0[/tex]

Agora resolvendo a equação

[tex]\log_3x+\log_3(x+2)=1[/tex]

[tex]\log_3x(x+2)=1[/tex] aplicando a definição de log

[tex]x(x+2)=3^1\\\\x^2+2x=3\\\\x^2+2x-3=0[/tex]

Resolvendo a equação do segundo grau temos

[tex]x=\dfrac{-2\pm\sqrt{2^2-4.1.(-3)}}{2.1}=\dfrac{-2\pm\sqrt{16}}{2}=\dfrac{-2\pm4}{2}=\left \{ {{x_1=1} \atop {x_2=-3}} \right.[/tex]

Encontramos [tex]x_1=1[/tex] e [tex]x_2=-3[/tex] porém como [tex]x>0[/tex] a unica solução dessa equação é [tex]\boxed{x=1}[/tex]