O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

3- Dadas as
matrizes A- (2 3/ 5 1) e B = {3 1/ 2 1) determinam
a) A²
b) B²
c) (A+B) x (A-B)​


Sagot :

Explicação passo-a-passo:

Sejam as matrizes

    [tex]A=\left[\begin{array}{ccc}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{array}\right][/tex]         e         [tex]B=\left[\begin{array}{ccc}b_{11}&b_{12}\\b_{21}&b_{22}\\\end{array}\right][/tex]

A multiplicação é feita assim

    [tex]AxB=\left[\begin{array}{ccc}a_{11}.b_{11}+a_{12}.b_{21}&a_{11}.b_{12}+a_{12}.b_{22}\\a_{21}.b_{11}+a_{22}.b_{21}&a_{21}.b_{12}+a_{22}.b_{22}\\\end{array}\right][/tex]

E a soma/subtração é feita assim

    [tex]A+B=\left[\begin{array}{ccc}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{22}\\\end{array}\right][/tex]

    [tex]A-B=\left[\begin{array}{ccc}a_{11}-b_{11}&a_{12}-b_{12}\\a_{21}-b_{21}&a_{22}-b_{22}\\\end{array}\right][/tex]

--------------------------------------------------------------------------------------------

[tex]A=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right][/tex]     ;     [tex]B=\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]

a) A²

   A² = A × A

   [tex]AxA=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right].\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right][/tex]

   [tex]AxA=\left[\begin{array}{ccc}2.2+3.5&2.3+3.1\\5.2+1.5&5.3+1.1\\\end{array}\right][/tex]

   [tex]AxA=\left[\begin{array}{ccc}4+15&6+3\\10+5&15+1\\\end{array}\right][/tex]

   [tex]AxA=\left[\begin{array}{ccc}19&9\\15&16\\\end{array}\right][/tex]

=======================================================

b) B²

   B² = B × B

   [tex]BxB=\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right].\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]

   [tex]BxB=\left[\begin{array}{ccc}3.3+1.2&3.1+1.1\\2.3+1.2&2.1+1.1\\\end{array}\right][/tex]

   [tex]BxB=\left[\begin{array}{ccc}9+2&3+1\\6+2&2+1\\\end{array}\right][/tex]

   [tex]BxB=\left[\begin{array}{ccc}11&4\\8&3\\\end{array}\right][/tex]

=======================================================

c) (A + B) × (A - B)

   

   · cálculo de A + B

     [tex]A+B=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right]+\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]

    [tex]A+B=\left[\begin{array}{ccc}2+3&3+1\\5+2&1+1\\\end{array}\right][/tex]

     [tex]A+B=\left[\begin{array}{ccc}5&4\\7&2\\\end{array}\right][/tex]

   · cálculo de A - B

     [tex]A-B=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right]-\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]

     [tex]A-B=\left[\begin{array}{ccc}2-3&3-1\\5-2&1-1\\\end{array}\right][/tex]

     [tex]A-B=\left[\begin{array}{ccc}-1&2\\3&0\\\end{array}\right][/tex]

   · cálculo de (A + B) × (A - B)

     [tex](A+B).(A-B)=\left[\begin{array}{ccc}5&4\\7&2\\\end{array}\right].\left[\begin{array}{ccc}-1&2\\3&0\\\end{array}\right][/tex]

     [tex](A+B).(A-B)=\left[\begin{array}{ccc}5.(-1)+4.3&5.2+4.0\\7.(-1)+2.3&7.2+2.0\\\end{array}\right][/tex]

     [tex](A+B).(A-B)=\left[\begin{array}{ccc}-5+12&10+0\\-7+6&14+0\\\end{array}\right][/tex]

     [tex](A+B).(A-B)=\left[\begin{array}{ccc}7&10\\-1&14\\\end{array}\right][/tex]