O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Explicação passo-a-passo:
Sejam as matrizes
[tex]A=\left[\begin{array}{ccc}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{array}\right][/tex] e [tex]B=\left[\begin{array}{ccc}b_{11}&b_{12}\\b_{21}&b_{22}\\\end{array}\right][/tex]
A multiplicação é feita assim
[tex]AxB=\left[\begin{array}{ccc}a_{11}.b_{11}+a_{12}.b_{21}&a_{11}.b_{12}+a_{12}.b_{22}\\a_{21}.b_{11}+a_{22}.b_{21}&a_{21}.b_{12}+a_{22}.b_{22}\\\end{array}\right][/tex]
E a soma/subtração é feita assim
[tex]A+B=\left[\begin{array}{ccc}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{22}\\\end{array}\right][/tex]
[tex]A-B=\left[\begin{array}{ccc}a_{11}-b_{11}&a_{12}-b_{12}\\a_{21}-b_{21}&a_{22}-b_{22}\\\end{array}\right][/tex]
--------------------------------------------------------------------------------------------
[tex]A=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right][/tex] ; [tex]B=\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]
a) A²
A² = A × A
[tex]AxA=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right].\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right][/tex]
[tex]AxA=\left[\begin{array}{ccc}2.2+3.5&2.3+3.1\\5.2+1.5&5.3+1.1\\\end{array}\right][/tex]
[tex]AxA=\left[\begin{array}{ccc}4+15&6+3\\10+5&15+1\\\end{array}\right][/tex]
[tex]AxA=\left[\begin{array}{ccc}19&9\\15&16\\\end{array}\right][/tex]
=======================================================
b) B²
B² = B × B
[tex]BxB=\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right].\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]
[tex]BxB=\left[\begin{array}{ccc}3.3+1.2&3.1+1.1\\2.3+1.2&2.1+1.1\\\end{array}\right][/tex]
[tex]BxB=\left[\begin{array}{ccc}9+2&3+1\\6+2&2+1\\\end{array}\right][/tex]
[tex]BxB=\left[\begin{array}{ccc}11&4\\8&3\\\end{array}\right][/tex]
=======================================================
c) (A + B) × (A - B)
· cálculo de A + B
[tex]A+B=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right]+\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]
[tex]A+B=\left[\begin{array}{ccc}2+3&3+1\\5+2&1+1\\\end{array}\right][/tex]
[tex]A+B=\left[\begin{array}{ccc}5&4\\7&2\\\end{array}\right][/tex]
· cálculo de A - B
[tex]A-B=\left[\begin{array}{ccc}2&3\\5&1\\\end{array}\right]-\left[\begin{array}{ccc}3&1\\2&1\\\end{array}\right][/tex]
[tex]A-B=\left[\begin{array}{ccc}2-3&3-1\\5-2&1-1\\\end{array}\right][/tex]
[tex]A-B=\left[\begin{array}{ccc}-1&2\\3&0\\\end{array}\right][/tex]
· cálculo de (A + B) × (A - B)
[tex](A+B).(A-B)=\left[\begin{array}{ccc}5&4\\7&2\\\end{array}\right].\left[\begin{array}{ccc}-1&2\\3&0\\\end{array}\right][/tex]
[tex](A+B).(A-B)=\left[\begin{array}{ccc}5.(-1)+4.3&5.2+4.0\\7.(-1)+2.3&7.2+2.0\\\end{array}\right][/tex]
[tex](A+B).(A-B)=\left[\begin{array}{ccc}-5+12&10+0\\-7+6&14+0\\\end{array}\right][/tex]
[tex](A+B).(A-B)=\left[\begin{array}{ccc}7&10\\-1&14\\\end{array}\right][/tex]
Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.