O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Explore nossa plataforma de perguntas e respostas para encontrar soluções confiáveis de uma ampla gama de especialistas em diversas áreas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
Temos as seguintes matrizes:
[tex]A = \begin{bmatrix}2&1 \\ 1&1\end{bmatrix}, = \begin{bmatrix}2&0 &1 \\1&1&1 \\ 2& 1 & - 1 \end{bmatrix} ,\begin{bmatrix}1&0 &0&3\\1&1&0&3\\ 0& 3 & 1&1 \\ 0&2&2&2 \end{bmatrix}[/tex]
Primeiro vamos lembrar que:
- Uma matriz é invertivel ou inversivel se e somente se o determinante da mesma resultar em um número ≠ 0 (diferente de 0), ou seja, para saber se essa matrizes terão inversa ou não, primeiro devemos analisar o determinante da mesma.
Temos que os determinantes das matrizes dadas são iguais a:
[tex]A = \begin{bmatrix}2&1 \\ 1&1\end{bmatrix} \to Det(A) = 1 \\ \\A = \begin{bmatrix}2&0 &1 \\1&1&1 \\ 2& 1 & - 1 \end{bmatrix} \to Det(A) = - 5 \\ \\ A = \begin{bmatrix}1&0 &0&3\\1&1&0&3\\ 0& 3 & 1&1 \\ 0&2&2&2 \end{bmatrix} \to Det(A) = 0[/tex]
Com esses determinantes, é possível ver que apenas as duas primeiras matrizes possuem a capacidade de serem inversíveis.
- Primeira Matriz
Para calcular a inversa da primeira matriz, vamos usar a seguinte notação:
[tex] \boxed{A^{-1}.A = I \: \: ou \: \: A.A^{-1} = I}[/tex]
Como a matriz inversa (A^(-1)) não é conhecida, podemos atribuir incógnitas para ela, já a matriz identidade (I) é conhecida e depende da ordem de matriz em que está se trabalhando.
[tex]\begin{bmatrix}2&1 \\ 1&1\end{bmatrix}.\begin{bmatrix}a&b \\ c&d\end{bmatrix} = \begin{bmatrix}1&0 \\ 0&1\end{bmatrix}[/tex]
Fazendo a multiplicação das matrizes:
[tex]\begin{bmatrix}2.a + 1.c&2b + d \\ a + c&b + d\end{bmatrix} = \begin{bmatrix}1&0\\ 0&1\end{bmatrix}[/tex]
Pela igualdade de matrizes, temos que:
[tex] \begin{cases} 2a + c = 1 \\ 2b + d = 0 \\ a + c = 0 \\ b + d = 1\end{cases}[/tex]
Agora é só resolver esse sistema e encontrar os valores das incógnitas:
[tex] \bullet \: a + c = 0 \longrightarrow a = - c \\ 2a + c = 1 \longrightarrow 2.( - c) + c = 1 \\ c = - 1 \\ \\ \bullet \: a + c = 0 \\ a - 1 = 0 \longrightarrow a = 1 \\ \\ \bullet b + d = 1 \to b = 1 - d \\ 2b + d = 0 \longrightarrow 2.(1 - d) + d = 0 \\ d = 2 \\ \\ \bullet \: b + d = 1 \\ b + 2 = 1 \longrightarrow b = - 1[/tex]
Substituindo esses dados na matriz inversa:
[tex]A {}^{ - 1} = \begin{bmatrix}a&b \\ c&d\end{bmatrix} \longrightarrow A {}^{ - 1} = \begin{bmatrix}1& - 1 \\ - 1&2\end{bmatrix}[/tex]
- Segunda matriz:
Basta seguir os mesmos passos usados anteriormente, o que muda é a ordem da matriz.
[tex]\begin{bmatrix}2&0 &1 \\1&1&1 \\ 2& 1 & - 1 \end{bmatrix}.\begin{bmatrix}a&b &c \\d&e&f \\ g& h& i \end{bmatrix} = \begin{bmatrix}1&0 &0 \\0&1&0 \\ 0& 0 & 1 \end{bmatrix}[/tex]
Multiplicando as matrizes:
[tex]\begin{bmatrix}2a + 0.d + 1.g&2b + 0.e + 1.h &2.c + 0.f + 1.i \\1a + 1d + 1g&1b + 1e + 1h&1c + 1f + 1i \\ 2a + d - g& 2b + e - h & 2c + f - i \end{bmatrix} = \begin{bmatrix}1& 0 &0 \\0&1&0 \\ 0& 0& 1 \end{bmatrix} \\ \\ \begin{bmatrix}2a + g&2b + h &2c + i \\a + d + g&b + e + h&c + f + i \\ 2a + d - g& 2b + e - h & 2c + f - i \end{bmatrix} = \begin{bmatrix}1& 0 &0 \\0&1&0 \\ 0& 0& 1 \end{bmatrix}[/tex]
Fazendo a igualdade matricial:
[tex] \begin{cases} 2a + g = 1 \\ 2b + h = 0 \\ 2c + 1 = 0 \\ \\ a + d + g = 0 \\ b + e + h = 1 \\ c + f + i = 0 \\ \\2a + d - g = 0 \\ 2b + e - h = 0 \\ 2c + f - i = 0 \end{cases}[/tex]
Agora é ir a luta e fazer algumas manipulações até encontrar o valor de cada incógnita. (Como isso leva um tempinho, colocarei logo os resultados de cada incógnita).
[tex] \begin{cases}a = \frac{3}{5} \\ b = - \frac{2}{5} \\ c = \frac{1}{5} \\ d = - \frac{2}{5} \\ e = \frac{3}{5} \\ f = \frac{1}{5} \\ g = - \frac{1}{5} \\ h = \frac{4}{5} \\ i = - \frac{2}{5} \end{cases}[/tex]
Substituindo todos esses resultados na inversa:
[tex]A {}^{ - 1} = \begin{bmatrix}a&b &c \\d&e&f \\ g& h& i \end{bmatrix} \longrightarrow A = \begin{bmatrix} \frac{3}{5} & - \frac{2}{5} & \frac{1}{5} \\ - \frac{2}{5} & \frac{3}{5} & \frac{1}{5} \\ - \frac{1}{5} & \frac{4}{5} & - \frac{2}{5} \end{bmatrix}[/tex]
Espero ter ajudado
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.