O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Suponha que o numero de bactérias N em certa cultura triplique a cada hora, seguindo a função N(t) = C.3^t, onde C é a constante e t representa o tempo (em horas). Sabendo que no instante t=0 o numero de bactérias é igual a 2700. Após quanto tempo a cultura terá 270000 bactérias?

Sagot :

conrad

Olá Saulo!!!!

 

[tex]N(t)=C.3^t[/tex]   Como para t=0   N=2700  podemos calcular a constante C:

 

[tex]2700=C.3^0[/tex]    >>>>>>>  [tex]2700=C.1[/tex]

 

[tex]\boxed{C=2700}[/tex]      

 

 

Após  certo tempo N = 270000, então basta substituir na fórmula:

 

[tex]270000=2700.3^t[/tex]   passando 2700 dividindo

 

[tex]\frac{270000}{2700}=3^t[/tex]   simplificando

 

[tex]100=3^t[/tex]  aplicando log dos dois lados da equação

 

[tex]log100=log3^t[/tex]   pela propriedade do log da potência

 

[tex]2=t.log3[/tex]passando log dividindo     e sabendo log3=0,47

 

[tex]2=t.log3[/tex]  

 

[tex]\frac{2}{0,47}=t[/tex]

 

[tex]t=4,19[/tex]      passando 0,19 para minutos 0,19 . 60 = 11,40  >>> 0,40.60 = 24seg

 

[tex]\large{\boxed{\boxed{t=4h11min24seg}}}[/tex] 

 

veja se entendeu!!!