Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.
Sagot :
Olá, Dhonna.
A análise deve ser dividida em quatro intervalos, cada um com figuras de volumes conhecidos.
(1) De x=1 a x=2: o trapézio deitado, após a rotação em torno do eixo x, se torna um tronco de cone deitado, com altura h=1, raio maior R=2 e raio menor r=1:
[tex]V=\frac{\pi h}3 (R^2+rR+r^2)= \frac{\pi \cdot 1}3 (2^2+1\cdot 2+1^2)= \frac{\pi}3 \cdot (4+2+1) = \frac{7\pi}3[/tex]
(2) De x=2 a x=3: retângulo de base 2 e altura 1 deitado, que, após a rotação em torno do eixo x, vira um cilindro deitado de altura h=1 e raio R=2:
[tex]V = \pi R^2 h=\pi \cdot 2^2 \cdot 1=4\pi[/tex]
(3) De x=3 a x=4: tronco de cone idêntico ao intervalo [1,2], cujo volume já foi calculado.
[tex]V= \frac{7\pi}3[/tex]
(4) De x=4 a x=5: quadrado de lado 1, que, após a rotação em torno do eixo x, vira um cilindro deitado de altura h=1 e raio r=1:
[tex]V = \pi r^2 h=\pi \cdot 1^2 \cdot 1=\pi[/tex]
O volume total é a soma dos quatro volumes calculados acima:
[tex]V_{total}=\frac{7\pi}3+4\pi+\frac{7\pi}3+\pi=\frac{7+12+7+3}3 \pi\\\\ \therefore \boxed{V_{total}=\frac{29}3 \pi}[/tex]
Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.