Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Considere a seguinte situação:
Certo dia, saíram dois ônibus de uma Etec para uma visita à Pinacoteca do Estado de São Paulo.
Uma das professoras, responsável pela contagem do total de alunos, observou que,
• em um dos ônibus, havia 3 alunos a mais que no outro;
• no ônibus com mais alunos, dois terços dos alunos eram moças;
• no ônibus com menos alunos, três quintos dos alunos eram moças e,
• do total de alunos que foram à visita, 34 eram rapazes.
Se x representa o número total de alunos no ônibus com mais alunos, e y representa o número total de alunos do outro
ônibus, então, ao ”traduzir” o problema proposto para a linguagem matemática, obtém-se?

Sagot :

Na linguagem matemática esse problema é um sistema, como segue:

 

[tex]\left \{x -y= 3}} \atop {5x+6y=510}} \right.[/tex]

 

Pelo método da substituição temos que: 

x = 3+ y

 

Substituindo "x" na segunda equação...

 

5(3+y) + 6y = 510

15 + 5y + 6y = 510

5y + 6y = 510 - 15

11y = 495

y = 495/11

y = 45

 

Agora que achamos o valor de y é só substituirmos para achar o valor de x: 

x = 45 + 3

x = 48

 

Encontramos a quantidade de alunos nos 2 ônibus, o ônibus "x" com mais alunos tem 48 alunos e o segundo "y "com menos alunos tem 45.

 

Agora para encontrar o número de moças e rapazes presente em cada ônibus basta resolvermos as questões:

O ônibus "x", dois terços dos alunos eram moças

48 . 2/3 = 32 moças

48 - 32 = 16 rapazes 

 

O ônibus "y", três quintos dos alunos eram moças

45 . 3/5 = 27 moças

45 - 27 = 18 rapazes

 

Total de moças: 59

Total de rapazes: 34