Dhonna
Answered

Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

A final do Campeonato Paulista de Futebol de 1973 entre Santos e Portuguesa foi decidida nos pênaltis. Após a cobrança de 3 pênaltis por cada time (de um total de 5), o placar estava 2x0 para o Santos quando o árbitro terminou o jogo. Porém, a Portuguesa poderia acertar os dois pênaltis que lhe restavam e o Santos errar seus dois, o que resultaria em empate. Para compensar o erro, a Federação Paulista de Futebol declarou os dois times campeões nesse ano. Mas será que essa decisão foi a mais justa? a) Considerando que a probabilidade de um jogador marcar o gol na cobrança de um pênalti é 50%, qual era a chance de a Portuguesa conseguir empatar a cobrança de pênaltis? b) De acordo com a FIFA (baseando-se em cobranças de pênalti em jogos oficiais) a probabilidade de um jogador que irá cobrar o pênalti marcar o gol é de 80%. Nesse caso, qual era a probabilidade de a Portuguesa conseguir empatar a cobrança de pênaltis?

Sagot :

lebrando que:

 

e- multiplicação

ou-soma

 

probabilidade de 

 

1fazer e 2perder e 1 fazer e 2 perder

 

0,5x0,5x0,5x0,5=6,25%

 

segundo a fifa

 

0,8.0,2.0,8.0,2=2,56%

Celio

Olá, Dhonna.

 

a) A probabilidade P da Portuguesa empatar seria de:

 

P = [Probabilidade de marcar duas vezes e do Santos errar as duas] = [Probabilidade da Portuguesa marcar o primeiro] x [Probabilidade da Portuguesa marcar o segundo] x [Probabilidade do Santos errar o primeiro] x [Probabilidade do Santos errar o segundo]= 50% x 50% x 50% x 50% = 0,5 x 0,5 x 0,5 x 0,5 = 0,0625 = 6,25%

 

b) A probabilidade P da Portuguesa empatar, de acordo com a Fifa, seria de:

 

P =[Probabilidade de marcar duas vezes e do Santos errar as duas] = [Probabilidade da Portuguesa marcar o primeiro] x [Probabilidade da Portuguesa marcar o segundo] x [Probabilidade do Santos errar o primeiro] x [Probabilidade do Santos errar o segundo] = 80% x 80% x 20% x 20% = 0,8 x 0,8 x 0,2 x 0,2 = 0,64 x 0,04 = 0,0256 = 2,56%