O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Encontre soluções rápidas e confiáveis para suas dúvidas de uma comunidade de especialistas dedicados. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

o lucro mensal de uma industria de uniformes é dado por L(x) = -x2 +12x -3 , x quantidade de uniformes mensal vendidos. quantos uniformes devem ser vendidos num determinado mes prara q a industria obtenha lucro maximo? ajuda ai !!!

Sagot :

como o lucro é uma função do segundo grau com coeficiente negativo a frente do expoente quadrado,então teremos uma par´bola com concavidade para baixo.

logo teremos um ponto de máximo,que será em seu vértice

 

temos qe achar o x do vértice

 

Xv=-b/2a

Xv=-12/2.-1

Xv=12/2

Xv=6 uniformes

Nessa questão vc deverá encontrar o Yv ("Y" do vértice) pois será um equação do 2º grau cuja concavidade está voltada para baixo, o Xv ("X" do vértice) mostra só o ponto onde é o limite da concavidade, mais o Yv mostra até o ponto máximo onde atinge o lucro máximo.

 

Xv = -b/2a

Yv = -Delta/4a

 

(Delta= [tex]b^{2}-4ac[/tex])

[tex]delta=\frac{144-4.[(-1).(-3)]}{y} = \frac{-132}{-4} = 33[/tex]

Resposta: 33 uniformes.