Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Descubra um vasto conhecimento de especialistas em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.
Sagot :
Olá, Sérgio.
As equações diofantinas são equações polinomiais com mais variáveis do que equações onde busca-se apenas números inteiros que satisfaçam a(s) igualdade(s).
A mais famosa das equações diofantinas é a que ficou conhecida como o "Último Teorema de Fermat":
[tex]x^n+y^n=z^n,\text{ para }n \geq 3, x,y,z \in \mathbb{Z},n \in \mathbb{N}[/tex]
O matemático francês Pierre de Fermat, no século XVII, propôs que a equação acima não possui nenhuma solução. O problema atravessou mais de 300 anos sem solução até que o matemático britânico Andrew Wiles, em 1994, após 8 anos de trabalho árduo demonstrou que, de fato, não havia solução.
Um exemplo de equação diofantina pode ser:
[tex]x+y^2+z^3=1+4+27=32[/tex]
Uma solução possível desta equação diofantina, como se pode observar na construção da expressão, é:
[tex]x=1, y=2 \text{ e } z=3[/tex]
Há outras soluções inteiras possíveis? Só um estudo bem mais aprofundado da curva gerada por esta equação poderia dizer. Por esta razão, o estudo das curvas geradas por equações diofantinas é um dos ramos mais prolíficos na pesquisa em Matemática.
Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.