Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
Olá, Aizidorio.
a) Altura h do triângulo equilátero na base (pelo Teorema de Pitágoras):
[tex]a^2=h^2+(\frac{a}2)^2 \Rightarrow h=\sqrt{a^2-\frac{a^2}4}=\sqrt{\frac34a^2}=\frac{\sqrt3}2a[/tex]
Área da base:
[tex]A_{base}=\frac{[base] \times [altura]}2=\frac{a \cdot \frac{\sqrt3}2a}2=\frac{\sqrt3}4 a^2[/tex]
Volume do prisma:
[tex]V_{prisma}=A_{base} \cdot b \Rightarrow \boxed{V_{prisma}=\frac{\sqrt3}4 a^2 b}[/tex]
______________________________________________________________________
b) Área do quadrado na base:
[tex]A_{base}=a \cdot a=a^2[/tex]
Volume do prisma:
[tex]V_{prisma}=A_{base} \cdot b \Rightarrow \boxed{V_{prisma}=a^2b}[/tex]
______________________________________________________________________
c) O hexágono regular de aresta [tex]a[/tex] é formado por 6 triângulos equiláteros de aresta [tex]a.[/tex] Portanto, sua área é igual a seis vezes a área do triângulo equilátero (veja no desenho em anexo), calculada na letra "a" do exercício.
Área do hexágono regular na base:
[tex]A_{base}=6 \cdot \frac{\sqrt3}4 a^2=\frac{3\sqrt3}2 a^2[/tex]
Volume do prisma:
[tex]V_{prisma}=A_{base} \cdot b \Rightarrow \boxed{V_{prisma}=\frac{3\sqrt3}2 a^2 b}[/tex]
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.