Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas dúvidas de maneira rápida e precisa. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
De acordo com o enunciado, x pertence ao primeiro quadrante;
Sabe-se que [tex]\cos^2 x + \sin^2 x = 1[/tex].
Segue,
[tex]\\ \cos^2 x + \sin^2 x = 1 \\\\ \left ( \frac{1}{2} \right )^2 + \sin^2 x = 1 \\\\ \sin^2 x = 1 - \frac{1}{4} \\\\ \sin^2 x = \frac{3}{4} \\\\ \sin x = \pm \frac{\sqrt{3}}{2}[/tex]
Uma vez que, x está no 1º quadrante, então o valor de [tex]\sin x[/tex] é positivo!
Daí, [tex]\boxed{\sin x = \frac{\sqrt{3}}{2}}[/tex].
Para encontrar [tex]\tan x[/tex] fazemos:
[tex]\\ \tan x = \frac{\sin x}{\cos x} \\\\\\ \tan x = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \\\\\\ \tan x = \frac{\sqrt{3}}{2} \div \frac{1}{2} \\\\\\ \tan x = \frac{\sqrt{3}}{2} \times \frac{2}{1} \\\\ \boxed{\boxed{\tan x = \sqrt{3}}}[/tex]
Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.