Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.
Sagot :
Olá, Murilo.
[tex]\log_{5}y + \log_{25}y = 3 \Rightarrow \log_{5}y + \frac{\log_{5}y}{\log_{5}25} = 3 \Rightarrow \log_{5}y + \frac{\log_{5}y}2 = 3\\\\ \Rightarrow (1+\frac12)\log_5y=3 \Rightarrow (\frac{2+1}2)\log_5y=3 \Rightarrow \frac32\log_5y=3 \\\\ \Rightarrow \log_5y=3\cdot \frac23 \Rightarrow \log_5y=2 \Rightarrow 5^2=y \Rightarrow \boxed{y=25}[/tex]
Existe uma propriedade dos logaritmos que facilita muito essa e outras questôes:
"Se você elevar o logaritmando e a base a um mesmo expoente o valor do log nçao se altera"
então vejamos:
[tex]Log_{5}Y+Log_{25}Y=3[/tex]
então vamos elevar ao quadrado o primeiro termo:
[tex]Log_{5^2}Y^2+Log_{25}Y=3[/tex]
[tex]Log_{25}Y^2+Log_{25}Y=3[/tex]
Aplicando a propriedade dos logarítimos : LogA+LogB =Log(A.B)
[tex]Log_{25}(Y^2.Y)=3 [/tex]
[tex]Log_{25}(Y^3)=3[/tex]
passando para forma exponencial
[tex]25^3=Y^3[/tex]
logo
[tex]\boxed{Y=25}[/tex]
Não sei se vc queria algo diferente mas mandei assim mesmo!!!! espero que entenda!!
Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.