Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Obtenha respostas rápidas para suas perguntas de uma rede de profissionais experientes em nossa plataforma de perguntas e respostas. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.
Sagot :
O ponto B é dado por: [tex]B = (x, 0)[/tex]
O, o ponto A por: [tex]A = (4, 4)[/tex]
Daí,
[tex]\\ d = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} \\ 5 = \sqrt{(4 - x)^2 + (4 - 0)^2} \\ (4 - x)^2 + 4^2 = 25 \\ 16 - 8x + x^2 + 16 = 25 \\ x^2 - 8x + 7 = 0 \\ \Delta = 64 - 28 \Rightarrow \Delta = 36 \\ x = \frac{- b \pm \sqrt{\Delta }}{2a} \Rightarrow x = \frac{8 \pm \sqrt{36}}{2} \\\\ x' = \frac{8 + 6}{2} \Rightarrow \boxed{x' = 7} \\\\ x'' = \frac{8 - 6}{2} \Rightarrow \boxed{x'' = 1}[/tex]
A abscissa de B pode ser 1 ou 7.
Um ponto é da forma (x,y), sendo x o valor da abscissa e y o valor da ordenada.
De acordo com o enunciado, o ponto B possui ordenada igual a zero. Sendo assim, ele é da forma B = (x,0). Além disso, o ponto A possui coordenadas iguais a 4, ou seja, A = (4,4).
A distância entre A e B é igual a 5. Vamos relembrar da fórmula da distância entre dois pontos.
Considere que temos os pontos A = (xa,ya) e B = (xb,yb). A distância (d) entre os pontos A e B é definida por:
- d² = (xb - xa)² + (yb - ya)².
Sendo assim, temos que:
5² = (4 - x)² + (0 - 4)²
25 = 16 - 8x + x² + 16
x² - 8x + 7 = 0.
Temos aqui uma equação do segundo grau. Para resolvê-la, vamos utilizar a fórmula de Bhaskara:
Δ = (-8)² - 4.1.7
Δ = 64 - 28
Δ = 36
[tex]x=\frac{8+-\sqrt{36}}{2}[/tex]
[tex]x=\frac{8+-6}{2}[/tex]
[tex]x'=\frac{8+6}{2}=7[/tex]
[tex]x''=\frac{8-6}{2}=1[/tex].
Portanto, o ponto B pode ser B = (7,0) ou B = (1,0).
Exercício sobre distância entre dois pontos: https://brainly.com.br/tarefa/137445

Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.