Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore nossa plataforma de perguntas e respostas para encontrar soluções confiáveis de uma ampla gama de especialistas em diversas áreas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
Olá Rosangela,
Essa equação trata-se de uma inequação de segundo grau. Você sabe como se resolve esse tipo de inequação ou sua dúvida é nesta inequação em particular? Tentarei dar uma resposta o mais ampla possível.
Os passos para resolver uma inequação do segundo grau é:
1. Igualar a inequação do 2° grau a zero (Se tiver algo após o [tex]\geq[/tex] ou [tex]\leq[/tex], passar para o outro lado de modo a deixar o segundo lado da inequação sendo zero.
2. Localizar e (se existir) as raízes da equação no eixo x (Esses serão o(s) ponto(s) que você irá marcar a intersecção da parábola no eixo x (eixo das abcissas).
3. Estudar o sinal da função correspondente, dependendo do valor do coeficiente a em [tex]ax^2 + bx + c)[/tex].
[tex]-x^2 + 6x - 9 \geq0[/tex]
Antes de tudo, acredito que é mais simples resolver uma equação ou inequação quando a incógnita é positiva. Logo, multiplicando toda a inequação por (-1):
[tex]x^2 - 6x + 9 \leq0 [/tex]
Observe que ao multiplicar por (-1) o [tex]\geq[/tex] tornou-se [tex]\leq[/tex].
Daqui, faremos uma resolução como se fosse uma equação de segundo grau.
[tex]x = \frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]
Logo:
[tex]x = \frac{-(-6) +-\sqrt{(-6)^2-4*1*9}}{2*1} = \frac{6 +- \sqrt{0}}{2} => x = 3[/tex]
Tudo que precisamos fazer agora é marcar esse ponto 3 (x,y) = (3,0) no eixo das abcissas no plano cartesiano e observar a concavidade da parábola (pelo coeficiente a em [tex]ax^2 + bx + c)[/tex], achando a solução S dessa inequação.
S = {x E R / x < 3 e x > 3}
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.