Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Usando a fórmula do termo geral da P.A.
[tex]\boxed{a_{n} = a_{1} + (N-1) * r}[/tex]
Bom, vamos por partes.
Se o primeiro termo (a1) é o dobro da razão, quer dizer que é duas vezes maior que a razão. Sendo duas vezes maior, a1 equivale a 2r. Portanto, onde tem a1, substiuiremos por 2r
[tex]a_{n} = 2r + (N-1) * r[/tex]
Se ele deu o trigésimo termo, basta substituirmos.
[tex]a_{30} = 2r + (30-1) * r[/tex]
[tex]93 = 2r + 29 * r[/tex]
[tex]93 = 2r + 29r[/tex]
[tex]93 = 31r[/tex]
[tex]\frac{93}{31} = r[/tex]
[tex]\underline{r = 3}[/tex]
Achamos que razão é 3. Se razão é 3, a1 é o dobro.
[tex]a1 = 2r[/tex]
[tex]a1 = 2*3[/tex]
[tex]\underline{a1 = 6}[/tex]
_________________________
Pronto, agora você acha qualquer termo.
(a1, a2, a3, a4...) = (6, 6+3, (6+3)+3...) = (6, 9, 12...)
Para achar os próximos termos, é só ir somando a razão a cada termo anterior. O próximo termo da P.A. é 12+3 e assim por diante...
A progressão aritmética é (6, 9, 12, 15, 18, 21, ...).
O termo geral de uma progressão aritmética é definido por aₙ = a₁ + (n - 1).r, sendo:
- a₁ = primeiro termo
- n = quantidade de termos
- r = razão.
De acordo com o enunciado, o primeiro termo é igual ao dobro da razão, ou seja, a₁ = 2r.
Além disso, temos a informação de que o trigésimo termo é igual a 93. Sendo assim, pela fórmula do termo geral, obtemos:
a₃₀ = a₁ + (30 - 1).r
93 = a₁ + 29r.
Substituindo o valor do primeiro termo, obtemos o valor da razão:
93 = 2r + 29r
31r = 93
r = 3.
Consequentemente, o valor do primeiro termo é igual a a₁ = 6.
Portanto, a progressão aritmética é igual a (6, 9, 12, 15, 18, 21, ...), ou seja, são os múltiplos de 3 maiores ou iguais a 6.
Exercício sobre progressão aritmética: https://brainly.com.br/tarefa/18721647

Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.