O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Conecte-se com profissionais em nossa plataforma para receber respostas precisas para suas perguntas de maneira rápida e eficiente. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

ABC é um triângulo isósceles, com  = 40º e AB = AC. Marca-se D sobre AC e E sobre AB de forma que DBC = 35º e ECD = 15º. Calcule o ângulo EDB.



Sagot :

conrad

A solução está escrita na imagem em anexo!!!

Na solução deste problema será usado a fórmula da soma dos ângulos internos de um triângulo (A+B+C=180º) e também dois casos de congruência de triângulos (ALA, LAL) que são fundamentais na finalização do problema!!!   aqcompanhe no anexo

View image conrad
Celio

Olá, StorClaudio.

 

No desenho em anexo, estão demonstradas as construções geométricas constantes do enunciado do exercício.

 

[tex]\hat{A}+\hat{B}+\hat{C}=180\º \Rightarrow 40\º+\hat{B}+\hat{C}=180\º \Rightarrow \hat{B}+\hat{C}=140\º\ (i)[/tex]

 

Como  [tex]\triangle ABC[/tex]  é isósceles  [tex]\Rightarrow \hat{B}=\hat{C}[/tex]

 

Substituindo em (i), temos:

 

[tex]\hat{B}+\hat{B}=\hat{C}+\hat{C}=140\º \Rightarrow 2\hat{B}=2\hat{C}=140\º \Rightarrow \hat{B}=\hat{C}=70\º \Rightarrow [/tex]

 

[tex]\begin{cases} \hat{EBD}+\hat{CBD}=70\º \Rightarrow \hat{EBD}+35\º=70\º \Rightarrow \hat{EBD}=35\º \\ \hat{BCE}+\hat{BCD}=70\º \Rightarrow \hat{BCE}+15\º=70\º \Rightarrow \hat{BCE}=55\º \end{cases}[/tex]

 

No  [tex]\triangle BFC[/tex]  temos:

 

[tex]\hat{BFC}+\hat{FCB}+\hat{CBF}=180\º \Rightarrow \hat{BFC}+55\º+35\º=180\º \Rightarrow \\ \hat{BFC}=90\º \Rightarrow \hat{EFB}=\hat{EFD}=\hat{CFD}=90\º \text{ (complementares e} \\ \text{opostos pelo v\'ertice)}[/tex]

 

No  [tex]\triangle BFE[/tex]  temos:

 

[tex]\hat{EBF}+\hat{BFE}+\hat{FEB}=180\º \Rightarrow 35\º+90\º+\hat{FEB}=180\º \\ \Rightarrow \hat{FEB}=55\º[/tex]

 

Os triângulos  [tex]\triangle BDE \text{ e } \triangle BDC[/tex]  possuem um lado igual em comum  [tex](\overline{BFD})[/tex]  e dois ângulos iguais  [tex](\hat{EBD}=\hat{CBD}=35\º \text{ e } \hat{BEF}=\hat{BCF}=55\º).[/tex]

 

Pelo critério LAA (lado, ângulo, ângulo), são, portanto, congruentes  [tex] \Rightarrow \overline{EF}=\overline{FC} [/tex]

 

Isto implica que os triângulos  [tex]\triangle DFE \text{ e } \triangle DFC[/tex]  também são congruentes, pelo critério LAL (lado, ângulo, lado), pois possuem dois lados iguais  [tex](\overline{EF}=\overline{FC} \text{ e } [/tex]

[tex]\overline{DF} \text{, este em comum})[/tex]  e um ângulo igual  [tex](\hat{DFE}=\hat{DFC}=90\º).[/tex]

 

Portanto, como  [tex]\triangle DFE \text{ e } \triangle DFC[/tex]  são congruentes, temos que

[tex]\hat{FED}=\hat{DCF}=15\º[/tex]

 

Finalmente:

 

[tex]\hat{FED} + \hat{EFD} + \hat{EDF} = 180\º \Rightarrow[/tex]

[tex]15\º+90\º+\hat{EDF}=180\º \Rightarrow \hat{EDF}=75\º[/tex]

 

[tex]\therefore \boxed{\hat{EDB}=\hat{EDF}=75\º}[/tex]

View image Celio
Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.