Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.

Preciso de ajuda , como faço para simplificar(efetuar) essa expressão:

x³-xy²/(x+y)² : (x-y)²/x²y-y³



Sagot :

conrad

[tex]x^3-xy^2/(x+y)^2 : (x-y)^2/x^2y-y^3\\ \\ \frac{x^3-xy^2}{(x+y)^2} : \frac{(x-y)^2}{x^2y-y^3} \\ \\ Primeiramente\ vamos\ inverter\ de\ divisao\\ para\ multiplicacao\\ Basta\ inverter\ o\ divisor\ e\ trocar\ para\ multiplicacao\\ \\ \frac{x^3-xy^2}{(x+y)^2} . \frac{x^2y-y^3}{(x-y)^2} \\ \\ vamos\ colocar\ x\ e\ y\ em\ evidencia\\ \\ \frac{x(x^2-y^2)}{(x+y)^2} . \frac{y(x^2-y^2)}{(x-y)^2} \\ \\ podemos\ escrever\ os\ denominadores\ juntos\ ,\ assim\\ \\ \frac{x(x^2-y^2).y(x^2-y^2)}{[(x+y).(x-y)]^{2}} [/tex]

 

percebendo um produto notável no denominador, poderemos escrever uma diferença de quadrados. e no numerador também podemos "juntar" os parênteses.

 

[tex]\frac{x.y(x^2-y^2)^2}{[x^2-y^2]^2}[/tex] 

 

agora podemos simplificar os (x^2-y^2)^2:

 

[tex]\frac{x.y}{1}\\ \\\boxed{{\LARGE{ x.y}}}[/tex]

 

veja se entendeu!!!

 

 

Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.