Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
Olá, Camilla.
Trata-se de uma PG cujo primeiro termo é 256 e a razão é [tex]\frac12.[/tex]
O total caminhado até o instante [tex]t[/tex] é dado pela soma desta PG até o instante [tex]t[/tex].
A fórmula da soma da PG até o instante [tex]t[/tex] é dada por:
[tex]S_t=a_1\cdot \frac{q^t-1}{q-1},\begin{cases}a_t:\text{t-\'esimo termo}\\a_1:\text{primeiro termo}\\q:\text{raz\~ao}\end{cases} [/tex]
Substituindo os valores do primeiro termo e da razão, temos:
[tex]S_t=256\cdot \frac{(\frac12)^t-1}{\frac12-1}=256\cdot \frac{(\frac12)^t-1}{-\frac12}=256\cdot \frac{1-(\frac12)^t}{\frac12}=512[1-(\frac12)^t]\Rightarrow\\\\ S_t=512-512\cdot(\frac12)^t\Rightarrow\,S_n=512-\frac{512}{2^t}[/tex]
Para resolver as letras "a" e "b", bastas substituirmos os valores em cada letra na variável correspondente à soma, [tex]S_t[/tex], e obter o valor de [tex]t.[/tex] Vamos lá.
[tex]a)\,S_t=480\Rightarrow512-\frac{512}{2^t}=480\Rightarrow512-480=\frac{512}{2^t}\Rightarrow\\\\32=\frac{512}{2^t}\Rightarrow2^t=\frac{512}{32}\Rightarrow 2^t=16\Rightarrow\boxed{t=4\text{ horas}}[/tex]
[tex]b)\,S_t=600\Rightarrow512-\frac{512}{2^t}=600\Rightarrow512-600=\frac{512}{2^t}\Rightarrow\\\\-88=\frac{512}{2^t}\Rightarrow2^t=\frac{512}{-88}\Rightarrow 2^t<0\Rightarrow\boxed{\text{n\~ao existe resposta}}[/tex]
De fato, se levarmos o tempo para o infinito, veremos que o máximo que a caminhada pode atingir são 512 m. 600 m, portanto, é impossível. Veja:
[tex]\lim\limits_{t\to+\infty}S_t=\lim\limits_{t\to+\infty}512-\frac{512}{2^t}=512-\lim\limits_{t\to+\infty}\frac{512}{2^t}=512-0=512[/tex]
Trata-se de uma PG cujo primeiro termo é 256 e a razão é [tex]\frac12.[/tex]
O total caminhado até o instante [tex]t[/tex] é dado pela soma desta PG até o instante [tex]t[/tex].
A fórmula da soma da PG até o instante [tex]t[/tex] é dada por:
[tex]S_t=a_1\cdot \frac{q^t-1}{q-1},\begin{cases}a_t:\text{t-\'esimo termo}\\a_1:\text{primeiro termo}\\q:\text{raz\~ao}\end{cases} [/tex]
Substituindo os valores do primeiro termo e da razão, temos:
[tex]S_t=256\cdot \frac{(\frac12)^t-1}{\frac12-1}=256\cdot \frac{(\frac12)^t-1}{-\frac12}=256\cdot \frac{1-(\frac12)^t}{\frac12}=512[1-(\frac12)^t]\Rightarrow\\\\ S_t=512-512\cdot(\frac12)^t\Rightarrow\,S_n=512-\frac{512}{2^t}[/tex]
Para resolver as letras "a" e "b", bastas substituirmos os valores em cada letra na variável correspondente à soma, [tex]S_t[/tex], e obter o valor de [tex]t.[/tex] Vamos lá.
[tex]a)\,S_t=480\Rightarrow512-\frac{512}{2^t}=480\Rightarrow512-480=\frac{512}{2^t}\Rightarrow\\\\32=\frac{512}{2^t}\Rightarrow2^t=\frac{512}{32}\Rightarrow 2^t=16\Rightarrow\boxed{t=4\text{ horas}}[/tex]
[tex]b)\,S_t=600\Rightarrow512-\frac{512}{2^t}=600\Rightarrow512-600=\frac{512}{2^t}\Rightarrow\\\\-88=\frac{512}{2^t}\Rightarrow2^t=\frac{512}{-88}\Rightarrow 2^t<0\Rightarrow\boxed{\text{n\~ao existe resposta}}[/tex]
De fato, se levarmos o tempo para o infinito, veremos que o máximo que a caminhada pode atingir são 512 m. 600 m, portanto, é impossível. Veja:
[tex]\lim\limits_{t\to+\infty}S_t=\lim\limits_{t\to+\infty}512-\frac{512}{2^t}=512-\lim\limits_{t\to+\infty}\frac{512}{2^t}=512-0=512[/tex]
Para percorrer 480 metros, o alpinista levará 4 horas; Não é possível percorrer 600 metros.
a) Observe que:
128/256 = 0,5
64/128 = 0,5
ou seja, a sequência (256,128,64) é uma Progressão Geométrica de razão 0,5.
A soma dos termos de uma Progressão Geométrica finita é calculada pela fórmula: [tex]Sn=\frac{a1(1-q^n)}{1-q}[/tex], sendo
a1 = primeiro termo
q = razão
n = quantidade de termo.
Temos que:
a1 = 256
q = 0,5
Sn = 480.
Então:
[tex]480=\frac{256(1-0,5^n)}{1-0,5}[/tex]
[tex]240=256-256.0,5^n[/tex]
[tex]16=256.0,5^n[/tex]
Como 16 = 2⁴, 256 = 2⁸, 0,5 = 2⁻¹, então:
2⁴ = 2⁸.2⁻ⁿ
As bases são iguais. Logo, podemos trabalhar apenas com os expoentes:
4 = 8 - n
n = 8 - 4
n = 4.
Portanto, o percurso de 480 metros durará 4 horas.
b) Perceba que 480/0,5 = 960.
Isso quer dizer que não é possível percorrer os 600 metros.
Para mais informações, acesse: https://brainly.com.br/tarefa/19475885
Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.