may1
Answered

Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Os números a,b e c são raízes da equação x³-2x²+3x-4=0 Calcule o valor de ab+ac+bc/a.b.c


Sagot :

Se os números a, b e c são raízes da equação x³ - 2x² + 3x - 4 = 0 --> 
1/a, 1/b e 1/c são raízes da equação -4x³+3x²-2x+1 = 0 --> 
Soma 1/a+1/b+1/c= - coef x²/ coef x³ = -3/(-4)= 3/4 

==> 1/a+1/b+1/c= 3/4 

O resultado da expressão é 0,75.

Esta questão está relacionada com equação de terceiro grau. As equações de terceiro grau são caracterizados pelo expoente do termo de maior grau igual a 3. Desse modo, as equações de segundo grau possuem três raízes. Para determinar essas raízes, utilizamos as relações de Girard.

Nesse caso, vamos utilizar as relações de Girard para resolver a questão. Essas relações envolvem as raízes das equações de terceiro grau, conforme as seguintes equações:

[tex]x_1+x_2+x_3=-\frac{b}{a} \\ \\ x_1\times x_2+x_1\times x_3+x_2\times x_3=\frac{c}{a} \\ \\ x_1\times x_2\times x_3=-\frac{d}{a}[/tex]

Veja que, na expressão do enunciado, temos duas das relações de Girard. Substituindo essas expressões e, consequentemente, os coeficientes da equação, o valor numérico da expressão será:

[tex]\frac{x_1\times x_2+x_1\times x_3+x_2\times x_3}{x_1\times x_2\times x_3}=-\frac{c}{d}=-\frac{3}{(-4)}=0,75[/tex]

Mais questões de Matemática em:

https://brainly.com.br/tarefa/18725518

https://brainly.com.br/tarefa/18726144

https://brainly.com.br/tarefa/18726629

View image numero20