O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Explore milhares de perguntas e respostas de uma comunidade de especialistas dispostos a ajudar você a encontrar soluções. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
a decomposição de um numero em fatores primos : vs tem que fazer o mmc dos numeros e multiplicar os resultados
ex : 21 l 3
7 l 7
1
3x7 = 21
Um número natural é um número primo quando ele tem exatamente dois divisores naturais distintos: o número um e ele mesmo1 .
Existem infinitos números primos, como demonstrado por Euclides por volta de 300 a.C..2
Nos inteiros, é um primo se ele tem exatamente quatro divisores distintos: e Uma definição um pouco mais técnica, que permite generalizar este conceito para outros conjuntos, é dizer que o conjunto dos divisores de p que não são inversíveis não é vazio, e todos seus elementos são produtos de p por inteiros inversíveis. Por definição, e não são números primos.
A propriedade de ser um primo é chamada "primalidade", e a palavra "primo" também é utilizada como substantivo ou adjetivo. Como "dois" é o único número primo par, o termo "primo ímpar" refere-se a todo primo maior do que dois.
Se um número inteiro tem módulo maior que um e não é primo, diz-se que é composto. Por convenção, os números 0, 1 e -1 não são considerados primos nem compostos.
O conceito de número primo é muito importante na teoria dos números. Um dos resultados da teoria dos números é o Teorema Fundamental da Aritmética, que afirma que qualquer número natural diferente de 1 pode ser escrito de forma única (desconsiderando a ordem) como um produto de números primos (chamados fatores primos): este processo se chama decomposição em fatores primos (fatoração).
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.