Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.
Sagot :
toda equação do 1grau com duas incógnitas x e y por exemplo tem infinitas soluções cada umas delas indicadas por um par ordenado de número representa sempre o valor da incógnita x o segundo representa sempre o valor da incógnita y
Usando o método de substituição:
Vamos resolver o seguinte sistema:
x + 2y = 8 (1)
2x + 3y = 13 (2)
1º passo: Isolar uma incógnita.
A equação mais simples é a equação (1). Nela vamos isolar a incógnita x, ou seja, deixá-la sozinha num membro:
x + 2y = 8
Subtraímos 2y dos dois membros:
x + 2y - 2y = 8 - 2y
x = 8 - 2y
Agora, eu posso trocar x por 8 - 2y
2º passo: substituir a incógnita isolada.
Na equação (2), substituímos a incógnita x por 8 - 2y.
2x + 3y = 13
2 . (8 - 2y) + 3y = 13
3º passo: Resolver a equação numa só incócgnita.
Resolvemos a equação obtida:
2 . (8 - 2y) + 3y = 13
16 - 4y + 3y = 13
- y = 13 - 16
- y = - 3
y = 3
4º passo: Encontrar o valor da incógnita isolada no início.
Ao isolarmos x, vimos que x = 8 - 2y. Substituindo o valor de y em x = 8 - 2y,
obtemos o valor de x:
x = 8 - 2 . 3
x = 8 - 6
x = 2
5º passo: Dar a resposta.
A solução de um sistema de equações em x e y é um par de valores: um para x, um para y.
A solução em que x = 2 e y = 3 costuma ser apresentada com este par ordenado:
(2; 3)
Ele chama-se par ordenado porque, nele, a ordem deve ser respeitada: primeiro vem o valor de x, e depois o de y.
Portanto, a única solução do sistema é (2; 3)
Usando o Método de Adição:
Considere o sistema:
5x - 3y = 15 (1)
2x + 3y = 6 (2)
Observe que a equação (1) tem o termo - 3y e a equação (2) tem o termo simétrico 3y.
Esse fato permite-nos obter uma só equação sem a incógnita y, somando as duas equações membro a membro.
Veja:
5x - 3y = 15
2x + 3y = 6
7x + 0 = 21
x = 21 : 7
x = 3
Agora é só substituir o valor de x numa das equações do sistema:
5x - 3y = 15
5 . 3 - 3y = 15
15 - 3y = 15
- 3y = 15 - 15
- 3y = 0
y = 0
A única solução do sistema é (3; 0)
Vamos resolver o seguinte sistema:
x + 2y = 8 (1)
2x + 3y = 13 (2)
1º passo: Isolar uma incógnita.
A equação mais simples é a equação (1). Nela vamos isolar a incógnita x, ou seja, deixá-la sozinha num membro:
x + 2y = 8
Subtraímos 2y dos dois membros:
x + 2y - 2y = 8 - 2y
x = 8 - 2y
Agora, eu posso trocar x por 8 - 2y
2º passo: substituir a incógnita isolada.
Na equação (2), substituímos a incógnita x por 8 - 2y.
2x + 3y = 13
2 . (8 - 2y) + 3y = 13
3º passo: Resolver a equação numa só incócgnita.
Resolvemos a equação obtida:
2 . (8 - 2y) + 3y = 13
16 - 4y + 3y = 13
- y = 13 - 16
- y = - 3
y = 3
4º passo: Encontrar o valor da incógnita isolada no início.
Ao isolarmos x, vimos que x = 8 - 2y. Substituindo o valor de y em x = 8 - 2y,
obtemos o valor de x:
x = 8 - 2 . 3
x = 8 - 6
x = 2
5º passo: Dar a resposta.
A solução de um sistema de equações em x e y é um par de valores: um para x, um para y.
A solução em que x = 2 e y = 3 costuma ser apresentada com este par ordenado:
(2; 3)
Ele chama-se par ordenado porque, nele, a ordem deve ser respeitada: primeiro vem o valor de x, e depois o de y.
Portanto, a única solução do sistema é (2; 3)
Usando o Método de Adição:
Considere o sistema:
5x - 3y = 15 (1)
2x + 3y = 6 (2)
Observe que a equação (1) tem o termo - 3y e a equação (2) tem o termo simétrico 3y.
Esse fato permite-nos obter uma só equação sem a incógnita y, somando as duas equações membro a membro.
Veja:
5x - 3y = 15
2x + 3y = 6
7x + 0 = 21
x = 21 : 7
x = 3
Agora é só substituir o valor de x numa das equações do sistema:
5x - 3y = 15
5 . 3 - 3y = 15
15 - 3y = 15
- 3y = 15 - 15
- 3y = 0
y = 0
A única solução do sistema é (3; 0)
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.