Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

olá! tem como me ajuda ae ?

resolva, em R, as seguintes inequações:

a) (x²-2x-8).(2x²-3x)>0

b) (-x²+x+2).(x²+2x-3)>0

c) (x+2).(x²-4)>0


Sagot :

x² - 2x -8 =0    a=1   b= -2    c= -8
2+- V 4-4 x 1 x 8 / 2 x1   (formula de baskara -b +- V b²- 4ac / 2a )
2 +- V36 / 2
2 +- 6 /2 
1° raiz  2 + 6 / 2 = 4
2° raiz 2 - 6 / 2 = -2

+         +  
 -2     -     4   (aqui vc faz uma parabola com concavidade pra cima)

2x² - 3x = 0
3 +- V9 - 4 x 2 x 0 / 2 x 2
3 +- V9 / 4
3+- 3 / 4
1° raiz 3 +3 /4 = 6/4 = 1,5
2° raiz 3- 3 /4 = 0 


 +          +      
 0       -     1,5      (aqui mais uma parabola com concavidade pra cima)

Agora estudar os sinais:

          -2      0     1,5       4
        +      -      -          -     +
        +     +      -          +     +
        +     -       +         -       +    (aqui esta o produto das equaçoes)

Como a equaçao é > 0 devemos pegar os valores onde no resultado deu positivo, logo
x<2 ou 0<x < 1,5 ou x>4


b)   -x² + x+ 2 =0    a=-1  b= 1 c=2
-1+- V1- 4 x -1 x 2 / 2 x -1
-1 +- V 9 / -2
-1 +- 3 / -2
1° raiz -1+ 3 /2 = 1
2° raiz -1 - 3 / 2 = -2

 -2      +       1       (  aqui concavidade para baixo pois a é negativo)
-

x²+ 2x -3 = 0    a=1   b = 2    c= -3
-2 +- V 4- 4 x 1 x -3 / 2 x 1
-2 +- V 16 / 2
-2 +- 4 / 2
1° raiz  -2+ 4 /2 = 1
2° raiz -2 -4 / 2 = -3

 +              +      
-3          -       1     concavidade para cima

Estudo do sinal : 
-3    -2      1
-     -      +     -
+   -       -      +
-     +     -       -     (Este é o produto das equaçoes)

Como é positiva a equaçao so pegaremos a parte positiva, logo      -3<x< -2


c)  x+2 = 0
x= -2

             +      
  -       -2           aqui sera uma reta pois é uma equaçao do primeiro grau)

x² - 4 = 0
x² = 4
x = +2 e -2

  +             +     
    -4      -     4      concavidade para cima

Estudo do sinal:
   -4   -2     4
 -     -      +    +
+     -      -     +
-      +      -     +
 
 -4 < x < -2