thiagooG
Answered

O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Nossa plataforma conecta você a profissionais prontos para fornecer respostas precisas para todas as suas perguntas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

3- uma Placa retangular de vidro comum, de 50 Cm de comprimento é 20Cm de largura, tem a temperatura elevada  de 10°C ate 30°C. entao qual  a area final  da superficie  dessa Placa . Dado( [tex]\alpha= 8.10^{-6}C^{-1}[/tex]



Sagot :

Área inicial:

 

[tex]A_o=a\cdot{b}[/tex]

 

[tex]A_o=50\cdot{20}[/tex]

 

[tex]A_o=1000cm^2[/tex]

 

Dilatação Superficial:

 

[tex]\Delta{A}=A_o\cdot{{2\alpha}\cdot{\Delta{\theta}}[/tex]

 

Isolando a Área final:

 

[tex]A=A_o\cdot{(1+{2\alpha}\cdot{\Delta{\theta}})[/tex]

 

[tex]A=1000\cdot{1+{2\cdot{8.10^{-6}}}\cdot{(30-10)}[/tex]

 

[tex]\boxed{A=1000,32cm^2}[/tex]

A  área final  da superficie  dessa placa é 1000,32 cm².

Quando um corpo sofre aumento de temperatura, a agitação das moléculas que o constituem aumenta, provocando, assim, uma dilatação (aumento do volume).

Essa dilatação térmica será considerada superficial quando estivermos tratando da variação do tamanho do corpo em apenas duas dimensões.

Podemos calcular essa dilatação por meio da equação que segue abaixo-

ΔA = Ao·β·ΔT

Onde,  

Ao = tamanho inicial da barra  

β = coeficiente de dilatação superficial  

ΔT = variação da temperatura

O coeficiente de dilatação superficial equivale ao dobro do coeficiente de dilatação linear.

β = 2α

Calculando a área inicial da placa retangular-

Ao = 50. 20

Ao = 1000 cm²

Assim,

ΔA = Ao·β·ΔT

ΔA = 1000·  2. 8. 10⁻⁶·(30 - 10)

ΔA = 0,32 cm²

A = ΔA + Ao

A = 1000,32 cm²

Saiba mais em,

brainly.com.br/tarefa/1398202

View image faguiarsantos