O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
O método da integração por partes é a versão da
integração da regra do produto para a diferenciação. Fazemos: [tex] \int\limits^a_b {4x e^{2x} } \, dx =[/tex][tex] \int\limits^a_b {u} \, dv = uv- \int\limits^a_b {v} \, du [/tex].
O objetivo principal da integração por partes é escolher u e dv para obter uma nova integral que é mais fácil de calcular do que a original. Em geral, não há regras imediatas e precisas para isso; é uma questão de experiência, que provém de muita prática.
Fazendo: u = 4x e dv = [tex]e^{2x}dx [/tex] e derivando u para obter du e integrando dv para obter v, temos:
se [tex]u=4x[/tex] então [tex]du=4dx[/tex]
se [tex]dv= e^{2x}dx [/tex] temos: [tex] \int\limits^a_b {1} \, dv= \int\limits^a_b { e^{2x} x} \, dx [/tex] que é uma integral por substituição simples que dá v = [tex] \frac{1}{2} e^{2x} [/tex]. Logo a integral dada fica assim:
[tex]4x. \frac{1}{2} e^{2x} - \int\limits^a_b { \frac{1}{2} e^{2x}. 4} \, dx [/tex]
que simplificando fica:
[tex]2x e^{2x} -2 \int\limits^a_b { e^{2x} } \, dx [/tex]
e resolvendo a última integral (repetida) fica assim:
[tex]2x e^{2x}-2. \frac{1}{2} . e^{2x} +c[/tex]
[tex]2x e^{2x} - e^{2x} +c = e^{2x} (2x-1)+c[/tex]
O objetivo principal da integração por partes é escolher u e dv para obter uma nova integral que é mais fácil de calcular do que a original. Em geral, não há regras imediatas e precisas para isso; é uma questão de experiência, que provém de muita prática.
Fazendo: u = 4x e dv = [tex]e^{2x}dx [/tex] e derivando u para obter du e integrando dv para obter v, temos:
se [tex]u=4x[/tex] então [tex]du=4dx[/tex]
se [tex]dv= e^{2x}dx [/tex] temos: [tex] \int\limits^a_b {1} \, dv= \int\limits^a_b { e^{2x} x} \, dx [/tex] que é uma integral por substituição simples que dá v = [tex] \frac{1}{2} e^{2x} [/tex]. Logo a integral dada fica assim:
[tex]4x. \frac{1}{2} e^{2x} - \int\limits^a_b { \frac{1}{2} e^{2x}. 4} \, dx [/tex]
que simplificando fica:
[tex]2x e^{2x} -2 \int\limits^a_b { e^{2x} } \, dx [/tex]
e resolvendo a última integral (repetida) fica assim:
[tex]2x e^{2x}-2. \frac{1}{2} . e^{2x} +c[/tex]
[tex]2x e^{2x} - e^{2x} +c = e^{2x} (2x-1)+c[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.