Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Olá, Vitória.
[tex]5x^4 + x^2 -3 = 0\\\\ \text{Mudan\c{c}a de vari\'avel: }y=x^2\\\\ 5y^2+y-3=0\\\\ \Delta=1+60=61 \Rightarrow y=\frac{-1\pm \sqrt{61}}{10} \Rightarrow x^2=\frac{-1\pm \sqrt{61}}{10} \Rightarrow \\\\ \boxed{x=\pm \sqrt{\frac{-1\pm \sqrt{61}}{10}}}[/tex]
O número [tex]-1\pm \sqrt{61}[/tex], dentro da raiz, pode ser positivo ou negativo. A raiz quadrada deste número é real, se ele for positivo, ou complexa, se ele for negativo.
Temos, portanto, 4 raízes da equação, sendo 2 reais e 2 complexas.
Resposta: letra "b"
[tex]5x^4 + x^2 -3 = 0\\\\ \text{Mudan\c{c}a de vari\'avel: }y=x^2\\\\ 5y^2+y-3=0\\\\ \Delta=1+60=61 \Rightarrow y=\frac{-1\pm \sqrt{61}}{10} \Rightarrow x^2=\frac{-1\pm \sqrt{61}}{10} \Rightarrow \\\\ \boxed{x=\pm \sqrt{\frac{-1\pm \sqrt{61}}{10}}}[/tex]
O número [tex]-1\pm \sqrt{61}[/tex], dentro da raiz, pode ser positivo ou negativo. A raiz quadrada deste número é real, se ele for positivo, ou complexa, se ele for negativo.
Temos, portanto, 4 raízes da equação, sendo 2 reais e 2 complexas.
Resposta: letra "b"
Resposta:
Equação biquadrada; 5.(x)elev a 4 + x² - 3 = 0, y = x²
y² = (x²)²
Daí: y² + y - 3 = 0 (eq. 2º grau en y), a = 1, b = 1, c = -3
Delta = 1² - 4.1.(-3) = 1 + 12 = 13 > 0 (duas raízes reais e diferen-
tes nesta do 2º grau)
y = ( -1 +- raiz de 13 ) : 2.1
= (-1 +- raiz de 13) : 2, y = (-1 + raiz de 13)/2
ou y = (-1 - raiz de 13)/
x² = y
x = +- raiz de [ ( - 1 + raiz de 13)/2] (DUAS RAÍZES) ou
x = +- raiz de [ ( - 1 - raiz de 13)/2] (AQUI O RADICANDO DARÁ NE-
GATIVO E, COMO SE SABE, A
RAIZ NÃO EXISTE.)
Resposta: duas raízes reais. OP: b)
Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.