Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

Um aviao percorreu a distancia de 5.000 metros na posição inclinada, e em relação ao solo percorreu 3.000 metros. Determine a altura do avião.

Sagot :

Podemos fazer pelo Teorema de Pitágoras.  

[tex] a^{2} = b^{2} + c^{2} [/tex]

Em que:
[tex]a[/tex] = Hipotenusa
[tex]b [/tex] = Altura 
[tex]c [/tex] = Base

Substituindo, temos: 

[tex](5000)^{2} = b^{2} + (3000) ^{2} [/tex]
[tex]25000000 = 9000000 + c² [/tex]
[tex]25000000 - 9000000 = b^{2} [/tex]
[tex] b^{2} = 16000000[/tex]
[tex]b = \sqrt{16000000} [/tex]
[tex]b = 4000[/tex]

A altura do avião é de 4000 m. 
Neste caso a altura do avião é um dos catetos do triângulo retângulo inclinado.
A hipotenusa é o trajeto de 5.000 m e o outro cateto o deslocamento horizontal

Para determinar a altura (h) podemos usar o Teorema de Pitágoras:

[tex]h^2=5.000^2-3000^2 \\ \\ h^2=25.000.000 - 9.000.000 \\ \\ h^2=16.000.000 \\ \\ h=\sqrt{16.000.000} \\ \\ \boxed{h=4.000 \ m}[/tex]