Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

preciso aprender tudo sobre o sistema de equação do 1º e 2º grau 



Sagot :

sistema do 1º grau 

Um sistema de equações é formado por duas ou mais expressões, no qual o número de equações deve ser igual ao número de variáveis. Por exemplo, se uma das funções possui três variáveis: x, y e z, devemos ter três equações para que o sistema permita possíveis soluções dentro dos números reais.

O sistema pode ser formado por diferentes tipos de equações. Vamos abordar os sistemas envolvendo equações do 1º e do 2º grau. O método de resolução, nesses casos, é o da substituição. Observe:

Exemplo 1

 

Isolando y na 2ª equação:

y – 2x = 0
y = 2x

Substituindo o valor de y na 1ª equação:

y – x² = 2
2x – x² = 2
–x² + 2x – 2 = 0
x² – 2x + 2 = 0

Resolver a equação do 2º grau utilizando Bháskara:
a = 1, b = 2 e c = 2

∆ = b² – 4ac
∆ = 2² – 4 * 1 * 2
∆ = 4 – 8
∆ = – 4

Nesse caso, a equação não possui raízes reais e, dessa forma, não existe ponto em comum entre as equações y – x² = 2 e y – 2x = 0. Observe o gráfico referente a elas:

 

Exemplo 2

 

Isolando y na 1ª equação:

y – 2x = 0
y = 2x

Substituindo o valor de y na 2ª equação:

y – x² = 1
2x – x² = 1
–x² + 2x – 1 = 0

Resolver a equação do 2º grau utilizando Bháskara:
a = –1, b = 2 e c = – 1

∆ = 2² – 4*(–1)*(–1)
∆ = 4 – 4
∆ = 0

 

Calculando o valor de y:

y = 2x
y = 2 * 1
y = 2

A solução do sistema é o par ordenado (1, 2), no qual x = 1 e y = 2. Isso indica que, em uma situação gráfica, a reta representativa da equação do 1º grau intercepta a parábola representativa da equação do 2º grau. Veja o gráfico representativo das equações y – 2x = 0 e y – x² = 1:

 

 Exemplo 3

 

Isolando y na 1ª equação:

y – x = 0
y = x

Substituindo o valor de y na 2ª equação:

y – x² = – 2
x – x² = – 2
–x² + x + 2 = 0

Resolver a equação do 2º grau utilizando Bháskara:
a = –1, b = 1 e c = 2

∆ = b² – 4ac
∆ = 1² – 4 *(–1) * 2
∆ = 1 + 8
∆ = 9


 

Calculando o valor de y, de acordo com y = x:

Quando x = –1, y = –1.

Quando x = 2, y = 2.


A solução do sistema são os pares ordenados (–1, –1) e (2, 2). Nessa situação, as equações y – x = 0 e y – x² = –2 possuem dois pontos em comum. Observe o gráfico:

 espero que ajude

Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.