Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
resolução:
m² - 5m + 6 = 0
(-5)² - 4 . 1 . 6 = 25 - 24 = 1
a raiz quadrada de 1 é 1
m1 = [-(-5) + 1]/2 = (5 + 1)/2 = 6/2 = 3
m2 = [-(-5) - 1]/2 = (5 - 1)/2 = 4/2 = 2
para que z seja um imaginário puro, é necessário que a parte imaginária seja diferente de zero
vamos verificar se z é um imaginário puro quando o valor de m é 3
z = (3² - 5 . 3 + 6) + (3² - 1)i
z = 0 + 8i
z = 8i
logo, este valor de z é um imaginário puro
agora, vamos verificar se z é um imaginário puro quando o valor de m é 2
z = (2² - 5 . 2 + 6) + (2² - 1)i
z = 3i
logo, este valor de z é um número imaginário puro
resposta: os valores de m são 3 e 2 e satisfazem a condição necessária para que z seja um imaginário puro
m² - 5m + 6 = 0
(-5)² - 4 . 1 . 6 = 25 - 24 = 1
a raiz quadrada de 1 é 1
m1 = [-(-5) + 1]/2 = (5 + 1)/2 = 6/2 = 3
m2 = [-(-5) - 1]/2 = (5 - 1)/2 = 4/2 = 2
para que z seja um imaginário puro, é necessário que a parte imaginária seja diferente de zero
vamos verificar se z é um imaginário puro quando o valor de m é 3
z = (3² - 5 . 3 + 6) + (3² - 1)i
z = 0 + 8i
z = 8i
logo, este valor de z é um imaginário puro
agora, vamos verificar se z é um imaginário puro quando o valor de m é 2
z = (2² - 5 . 2 + 6) + (2² - 1)i
z = 3i
logo, este valor de z é um número imaginário puro
resposta: os valores de m são 3 e 2 e satisfazem a condição necessária para que z seja um imaginário puro
Os valores de m de modo que z seja um imaginário puro são 2 e 3.
Um número complexo é da forma z = a + bi, sendo:
- a a parte real
- b a parte imaginária.
Quando um número complexo é dito imaginário puro, significa que a parte real é igual a zero, ou seja, só existe a parte imaginária.
No número complexo z = (m² - 5m + 6) + (m² - 1)i, temos que:
- a parte real é m² - 5m + 6
- a parte imaginária é m² - 1.
Igualando a parte real a 0, obtemos a seguinte equação do segundo grau: m² - 5m + 6 = 0.
Para resolver uma equação do segundo grau, podemos utilizar a fórmula de Bhaskara:
Δ = (-5)² - 4.1.6
Δ = 25 - 24
Δ = 1
[tex]m=\frac{5+-\sqrt{1}}{2}[/tex]
[tex]m=\frac{5+-1}{2}[/tex]
[tex]m'=\frac{5+1}{2}=3[/tex]
[tex]m''=\frac{5-1}{2}=2[/tex].
Portanto, quando m for igual a 2 ou igual a 3, o número complexo z = (m² - 5m + 6) + (m² - 1)i se torna um imaginário puro.
Para mais informações sobre números complexos, acesse: https://brainly.com.br/tarefa/18342170

Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.