Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

log de um quarto na base 2

Sagot :

Niiya
[tex]1/a^{n}=a^{-n}[/tex]
[tex]log_{b}(a^{n})=n*log_{b}(a)[/tex]
[tex]log_{x}(x)=1[/tex]
_____________________

[tex]log_{2}(1/4) = log_{2}(1/2^{2})[/tex]
[tex]log_{2}(1/4)=log_{2}(2^{-2})[/tex]
[tex]log_{2}(1/4)=(-2)*log_{2}(2)[/tex]
[tex]log_{2}(1/4)=(-2)*1[/tex]
[tex]log_{2}(1/4)=-2[/tex]
[tex]log_{2}\frac{1}{4}[/tex]

Pela teoria:

[tex]log_{2}\frac{1}{4} = x \\\\ 2^{x} = \frac{1}{4} \\\\ 2^{x} = \frac{1}{4}[/tex]

Podemos inverter o numerador com o denominador, para isso, basta trocar o sinal do expoente da fração:

[tex]2^{x} = (\frac{1}{4})^{1} \\\\ 2^{x} = (\frac{4}{1})^{-1} \\\\ 2^{x} = (4)^{-1} \\\\ 2^{x} = (2^{2})^{-1} \\\\ 2^{x} = 2^{-2} \\\\ \not{2}^{x} = \not{2}^{-2} \\\\ \boxed{x = -2}[/tex]


[tex]\therefore \boxed{\boxed{log_{2}\frac{1}{4} = -2}}[/tex]
Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.