O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.
Sagot :
[tex]1/a^{n}=a^{-n}[/tex]
[tex]log_{b}(a^{n})=n*log_{b}(a)[/tex]
[tex]log_{x}(x)=1[/tex]
_____________________
[tex]log_{2}(1/4) = log_{2}(1/2^{2})[/tex]
[tex]log_{2}(1/4)=log_{2}(2^{-2})[/tex]
[tex]log_{2}(1/4)=(-2)*log_{2}(2)[/tex]
[tex]log_{2}(1/4)=(-2)*1[/tex]
[tex]log_{2}(1/4)=-2[/tex]
[tex]log_{b}(a^{n})=n*log_{b}(a)[/tex]
[tex]log_{x}(x)=1[/tex]
_____________________
[tex]log_{2}(1/4) = log_{2}(1/2^{2})[/tex]
[tex]log_{2}(1/4)=log_{2}(2^{-2})[/tex]
[tex]log_{2}(1/4)=(-2)*log_{2}(2)[/tex]
[tex]log_{2}(1/4)=(-2)*1[/tex]
[tex]log_{2}(1/4)=-2[/tex]
[tex]log_{2}\frac{1}{4}[/tex]
Pela teoria:
[tex]log_{2}\frac{1}{4} = x \\\\ 2^{x} = \frac{1}{4} \\\\ 2^{x} = \frac{1}{4}[/tex]
Podemos inverter o numerador com o denominador, para isso, basta trocar o sinal do expoente da fração:
[tex]2^{x} = (\frac{1}{4})^{1} \\\\ 2^{x} = (\frac{4}{1})^{-1} \\\\ 2^{x} = (4)^{-1} \\\\ 2^{x} = (2^{2})^{-1} \\\\ 2^{x} = 2^{-2} \\\\ \not{2}^{x} = \not{2}^{-2} \\\\ \boxed{x = -2}[/tex]
[tex]\therefore \boxed{\boxed{log_{2}\frac{1}{4} = -2}}[/tex]
Pela teoria:
[tex]log_{2}\frac{1}{4} = x \\\\ 2^{x} = \frac{1}{4} \\\\ 2^{x} = \frac{1}{4}[/tex]
Podemos inverter o numerador com o denominador, para isso, basta trocar o sinal do expoente da fração:
[tex]2^{x} = (\frac{1}{4})^{1} \\\\ 2^{x} = (\frac{4}{1})^{-1} \\\\ 2^{x} = (4)^{-1} \\\\ 2^{x} = (2^{2})^{-1} \\\\ 2^{x} = 2^{-2} \\\\ \not{2}^{x} = \not{2}^{-2} \\\\ \boxed{x = -2}[/tex]
[tex]\therefore \boxed{\boxed{log_{2}\frac{1}{4} = -2}}[/tex]
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.