Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.

como fasso pra iniciar uma equacao esponencial?

Sagot :

Niiya
Você deve tentar igualar as bases. Caso seja impossível fazer isso, deve-se aplicar log nos 2 lados da equação

Quando as bases das potências forem iguais, os expoentes devem ser iguais
________________________

Ex: [tex]4^{x}=32[/tex]

[tex]4^{x}=32[/tex]
[tex](2^{2})^{x}=2^{5}[/tex]
[tex]2^{2x}=2^{5}[/tex]
[tex]2x = 5[/tex]
[tex]x = 5/2[/tex]

Ex: [tex]2^{x}=3[/tex]

Igualar as bases, nesse caso, seria impossível, logo aplicamos log nos 2 lados da equação:

[tex]2^{x} = 3[/tex]
[tex]log 2^{x} = log3[/tex]
[tex]x*log2=log3[/tex]
[tex]x=log3/log2[/tex]
________________________

Mas o modo de resolver é só esse. Você deve ter em mente todas as propriedades exponenciais, e se já aprendeu logaritmos, todas as propriedades logarítmicas.

Propriedades de potenciação:
[tex]a^{x} * a^{y} = a^{(x+y)[/tex]
[tex]a^{x} / a^{y} = a^{(x-y)}[/tex]
[tex](a^{x})^{y}=a^{(x*y)}[/tex]
[tex]1 / a^{n}=a^{-n}[/tex]
[tex]\sqrt[n]{x^{y}} =x^{(y/n)}[/tex]

Propriedades logarítmicas:
[tex]log_{b}(a)=c <=> b^{c}=a[/tex]
[tex]log_{b}(x*y) = log_{b}(x) + log_{b}(y)[/tex]
[tex]log_{b}(x/y) = log_{b}(x) - log_{b}(y)[/tex]
[tex]log_{b}(a^{n}) = n*log_{b}(a)[/tex]
[tex]log_{(b^{n})}(a) = (1 / n)*log_{b}(a)[/tex]
[tex]1/log_{b}(a)=log_{a}(b)[/tex]
Mudança de base (b pra c): [tex]log_{b}(a) = log_{c}(a)/log_{c}(b)[/tex]
________________________

Ex: [tex](4 / 3)^{x + 1} = (81/256)^{2x}[/tex]

[tex](4 / 3)^{x + 1} = (81/256)^{2x}[/tex]
[tex](4 / 3)^{(x+1)}=(3^{4}/4^{4})^{2x}[/tex]
[tex](4/3)^{(x+1)}=[(3/4)^{4}]^{2x}[/tex]
[tex](4/3)^{(x+1)}=[(4/3)^{-4}]^{2x}[/tex]
[tex](4/3)^{(x+1)}=(4/3)^{([-4]*2x])[/tex]
[tex](4/3)^{(x+1)}=(4/3)^{-8x}[/tex]
[tex]x+1=-8x[/tex]
[tex]1=-8x-x[/tex]
[tex]1=-9x[/tex]
[tex]x=1/(-9)[/tex]
[tex]x=-1/9[/tex]