Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
Você deve tentar igualar as bases. Caso seja impossível fazer isso, deve-se aplicar log nos 2 lados da equação
Quando as bases das potências forem iguais, os expoentes devem ser iguais
________________________
Ex: [tex]4^{x}=32[/tex]
[tex]4^{x}=32[/tex]
[tex](2^{2})^{x}=2^{5}[/tex]
[tex]2^{2x}=2^{5}[/tex]
[tex]2x = 5[/tex]
[tex]x = 5/2[/tex]
Ex: [tex]2^{x}=3[/tex]
Igualar as bases, nesse caso, seria impossível, logo aplicamos log nos 2 lados da equação:
[tex]2^{x} = 3[/tex]
[tex]log 2^{x} = log3[/tex]
[tex]x*log2=log3[/tex]
[tex]x=log3/log2[/tex]
________________________
Mas o modo de resolver é só esse. Você deve ter em mente todas as propriedades exponenciais, e se já aprendeu logaritmos, todas as propriedades logarítmicas.
Propriedades de potenciação:
[tex]a^{x} * a^{y} = a^{(x+y)[/tex]
[tex]a^{x} / a^{y} = a^{(x-y)}[/tex]
[tex](a^{x})^{y}=a^{(x*y)}[/tex]
[tex]1 / a^{n}=a^{-n}[/tex]
[tex]\sqrt[n]{x^{y}} =x^{(y/n)}[/tex]
Propriedades logarítmicas:
[tex]log_{b}(a)=c <=> b^{c}=a[/tex]
[tex]log_{b}(x*y) = log_{b}(x) + log_{b}(y)[/tex]
[tex]log_{b}(x/y) = log_{b}(x) - log_{b}(y)[/tex]
[tex]log_{b}(a^{n}) = n*log_{b}(a)[/tex]
[tex]log_{(b^{n})}(a) = (1 / n)*log_{b}(a)[/tex]
[tex]1/log_{b}(a)=log_{a}(b)[/tex]
Mudança de base (b pra c): [tex]log_{b}(a) = log_{c}(a)/log_{c}(b)[/tex]
________________________
Ex: [tex](4 / 3)^{x + 1} = (81/256)^{2x}[/tex]
[tex](4 / 3)^{x + 1} = (81/256)^{2x}[/tex]
[tex](4 / 3)^{(x+1)}=(3^{4}/4^{4})^{2x}[/tex]
[tex](4/3)^{(x+1)}=[(3/4)^{4}]^{2x}[/tex]
[tex](4/3)^{(x+1)}=[(4/3)^{-4}]^{2x}[/tex]
[tex](4/3)^{(x+1)}=(4/3)^{([-4]*2x])[/tex]
[tex](4/3)^{(x+1)}=(4/3)^{-8x}[/tex]
[tex]x+1=-8x[/tex]
[tex]1=-8x-x[/tex]
[tex]1=-9x[/tex]
[tex]x=1/(-9)[/tex]
[tex]x=-1/9[/tex]
Quando as bases das potências forem iguais, os expoentes devem ser iguais
________________________
Ex: [tex]4^{x}=32[/tex]
[tex]4^{x}=32[/tex]
[tex](2^{2})^{x}=2^{5}[/tex]
[tex]2^{2x}=2^{5}[/tex]
[tex]2x = 5[/tex]
[tex]x = 5/2[/tex]
Ex: [tex]2^{x}=3[/tex]
Igualar as bases, nesse caso, seria impossível, logo aplicamos log nos 2 lados da equação:
[tex]2^{x} = 3[/tex]
[tex]log 2^{x} = log3[/tex]
[tex]x*log2=log3[/tex]
[tex]x=log3/log2[/tex]
________________________
Mas o modo de resolver é só esse. Você deve ter em mente todas as propriedades exponenciais, e se já aprendeu logaritmos, todas as propriedades logarítmicas.
Propriedades de potenciação:
[tex]a^{x} * a^{y} = a^{(x+y)[/tex]
[tex]a^{x} / a^{y} = a^{(x-y)}[/tex]
[tex](a^{x})^{y}=a^{(x*y)}[/tex]
[tex]1 / a^{n}=a^{-n}[/tex]
[tex]\sqrt[n]{x^{y}} =x^{(y/n)}[/tex]
Propriedades logarítmicas:
[tex]log_{b}(a)=c <=> b^{c}=a[/tex]
[tex]log_{b}(x*y) = log_{b}(x) + log_{b}(y)[/tex]
[tex]log_{b}(x/y) = log_{b}(x) - log_{b}(y)[/tex]
[tex]log_{b}(a^{n}) = n*log_{b}(a)[/tex]
[tex]log_{(b^{n})}(a) = (1 / n)*log_{b}(a)[/tex]
[tex]1/log_{b}(a)=log_{a}(b)[/tex]
Mudança de base (b pra c): [tex]log_{b}(a) = log_{c}(a)/log_{c}(b)[/tex]
________________________
Ex: [tex](4 / 3)^{x + 1} = (81/256)^{2x}[/tex]
[tex](4 / 3)^{x + 1} = (81/256)^{2x}[/tex]
[tex](4 / 3)^{(x+1)}=(3^{4}/4^{4})^{2x}[/tex]
[tex](4/3)^{(x+1)}=[(3/4)^{4}]^{2x}[/tex]
[tex](4/3)^{(x+1)}=[(4/3)^{-4}]^{2x}[/tex]
[tex](4/3)^{(x+1)}=(4/3)^{([-4]*2x])[/tex]
[tex](4/3)^{(x+1)}=(4/3)^{-8x}[/tex]
[tex]x+1=-8x[/tex]
[tex]1=-8x-x[/tex]
[tex]1=-9x[/tex]
[tex]x=1/(-9)[/tex]
[tex]x=-1/9[/tex]
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.