Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
pow, essa é chata mas vamos lá!
integral sen^3(x)dx = integral sen^2(x)*sen(x) dx
Olhe propriedades trigonométricas, você verá que sen^2(x) = 1-cos^2(x)
substituindo temos:
integral [(1-cos^2(x)) * sen(x)] dx (multiplique como uma fração)
integral [sen(x) - cos^2(x) * sen(x)] dx
integral sen(x) dx - integral cos^2(x) * sen(x) dx (I) (separe sempre que tiver - ou + entre elas)
integral cos^2(x) * sen(x) dx (II)
Resolvendo (II) por substituição:
u = cos(x)
du = -sen(x) dx
Substituindo em (II):
- integral u² du = - u^3/3 = -cos^3(X)/3 + c
Substituindo em (I):
integral sen(x) dx - integral cos^2(x) * sen(x) dx
-cos(x) + cos^3(x)/3 + c e terminamos por aqui!
integral sen^3(x)dx = integral sen^2(x)*sen(x) dx
Olhe propriedades trigonométricas, você verá que sen^2(x) = 1-cos^2(x)
substituindo temos:
integral [(1-cos^2(x)) * sen(x)] dx (multiplique como uma fração)
integral [sen(x) - cos^2(x) * sen(x)] dx
integral sen(x) dx - integral cos^2(x) * sen(x) dx (I) (separe sempre que tiver - ou + entre elas)
integral cos^2(x) * sen(x) dx (II)
Resolvendo (II) por substituição:
u = cos(x)
du = -sen(x) dx
Substituindo em (II):
- integral u² du = - u^3/3 = -cos^3(X)/3 + c
Substituindo em (I):
integral sen(x) dx - integral cos^2(x) * sen(x) dx
-cos(x) + cos^3(x)/3 + c e terminamos por aqui!
[tex]\mathsf{\int{\sin}^{3}(x)dx=\int{\sin}^{2}(x).\sin(x)dx}\\\mathsf{\int({\cos}^{2}(x)-1).\sin(x)dx}[/tex][tex]u=\cos(x)\to-du=\sin(x)dx[/tex]
[tex] \mathsf{\int({\cos}^{2}(x)-1).\sin(x)dx}\\ = \mathsf{-\int({u}^{2}-1)du} = \mathsf{-\dfrac{1}{3} {u}^{3} + u + c }[/tex]
[tex]\boxed{\boxed{\mathsf{\int{\sin}^{3}(x)dx=-\dfrac{1}{3}{\cos}^{3}(x)+\cos(x)+c}}}[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.