Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.
Sagot :
1) Primeiramente vamos calcular o espaço amostral do evento, ou seja, todas as possibilidades.
1° lançamento: 6 chances de saírem números diferentes
2° lançamento: mais 6 chances de sair números distintos
Por isso, o espaço é:
[tex]n(U) = 6 \times 6 = 36[/tex]
Agora vamos calcular o que queremos: soma dos pontos igual a 6. E as possibilidades são: (lembrando que o primeiro número do par é do 1° lançamento, e o segundo do segundo lançamento:
[tex]n(A) = \{(1,5)(2,4)(3,3)(4,2)(5,1)\} \rightarrow 5 \ \text{elementos}[/tex]
Portanto:
[tex]P(A) = \frac{n(A)}{n(U)} \\\\ \boxed{\boxed{P(A) = \frac{5}{36}}}[/tex]
2- Já sabemos que o espaço amostral de cada um será 36. Vamos ver a possibilidade de sair um número par na multiplicação:
[tex]n(A) = \{(1,2)(1,4)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,2)(3,4)(3,6)(4,1) \\ (4,2)(4,3)(4,4)(4,5)(4,6)(5,2)(5,4)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)\} \rightarrow \\ 27 \ elementos[/tex]
Portanto:
[tex]P(A) =\frac{n(A)}{n(U)} \\\\ P(A) =\frac{27^{\div 3}}{36^{\div3}} = \frac{9^{\div3}}{12^{\div 3}} = \frac{3}{4} = \boxed{75\%}[/tex]
Agora a probabilidade de ocorrer, na multiplicação, resultado ímpar.
[tex]n(B) = \{(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)\} \rightarrow 9 \ elementos \\\\\\ P(B) = \frac{n(B)}{n(U)} \\\\ P(B) = \frac{9^{\div3}}{36^{\div3}} = \frac{3^{\div3}}{12^{\div3}} = \frac{1}{4} = \boxed{25\%}[/tex]
Portanto, está bem claro. Tem mais chance de ocorrer um resultado par no produto.
3- Bom, para sair pessoas do mesmo sexo, ou devem ser MULHERES/MULHERES ou HOMENS/HOMENS. Primeiramente vamos ver a probabilidade de sair só mulher
[tex]M \ \ \ \ \ \ M \\ \frac{5}{8}[/tex]
O 8 é o espaço amostral, pois é o total de pessoas; 5 é o total de mulheres. Mas se vier uma segunda mulher, o espaço não será mais 8, mas sim 7, pois uma mulher já foi escolhida, assim, o total também diminui para 4.
[tex]M \ \ \ \ \ \ M \\ \frac{5}{8} \ \ \ \cdot \ \ \ \frac{4}{7} = \ \frac{20^{\div 4}}{56^{\div4}} = \boxed{\frac{5}{14}}[/tex]
Agora de homens:
[tex]H \ \ \ \ \ \ H \\ \frac{3}{8} \ \ \ \cdot \ \ \ \frac{2}{7} \ = \frac{6^{\div2}}{56^{\div2}} = \boxed{\frac{3}{28}}[/tex]
Somamos os dois:
[tex]P(A) = \frac{5}{14} + \frac{3}{28} \\\\ MMC = 28 \\\\ P(A) = \frac{5^{\times2}}{14^{\times2}} + \frac{3}{28} \\\\ P(A) = \frac{10}{28} + \frac{3}{28} = \boxed{\boxed{\frac{13}{28}}}[/tex]
1° lançamento: 6 chances de saírem números diferentes
2° lançamento: mais 6 chances de sair números distintos
Por isso, o espaço é:
[tex]n(U) = 6 \times 6 = 36[/tex]
Agora vamos calcular o que queremos: soma dos pontos igual a 6. E as possibilidades são: (lembrando que o primeiro número do par é do 1° lançamento, e o segundo do segundo lançamento:
[tex]n(A) = \{(1,5)(2,4)(3,3)(4,2)(5,1)\} \rightarrow 5 \ \text{elementos}[/tex]
Portanto:
[tex]P(A) = \frac{n(A)}{n(U)} \\\\ \boxed{\boxed{P(A) = \frac{5}{36}}}[/tex]
2- Já sabemos que o espaço amostral de cada um será 36. Vamos ver a possibilidade de sair um número par na multiplicação:
[tex]n(A) = \{(1,2)(1,4)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,2)(3,4)(3,6)(4,1) \\ (4,2)(4,3)(4,4)(4,5)(4,6)(5,2)(5,4)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)\} \rightarrow \\ 27 \ elementos[/tex]
Portanto:
[tex]P(A) =\frac{n(A)}{n(U)} \\\\ P(A) =\frac{27^{\div 3}}{36^{\div3}} = \frac{9^{\div3}}{12^{\div 3}} = \frac{3}{4} = \boxed{75\%}[/tex]
Agora a probabilidade de ocorrer, na multiplicação, resultado ímpar.
[tex]n(B) = \{(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)\} \rightarrow 9 \ elementos \\\\\\ P(B) = \frac{n(B)}{n(U)} \\\\ P(B) = \frac{9^{\div3}}{36^{\div3}} = \frac{3^{\div3}}{12^{\div3}} = \frac{1}{4} = \boxed{25\%}[/tex]
Portanto, está bem claro. Tem mais chance de ocorrer um resultado par no produto.
3- Bom, para sair pessoas do mesmo sexo, ou devem ser MULHERES/MULHERES ou HOMENS/HOMENS. Primeiramente vamos ver a probabilidade de sair só mulher
[tex]M \ \ \ \ \ \ M \\ \frac{5}{8}[/tex]
O 8 é o espaço amostral, pois é o total de pessoas; 5 é o total de mulheres. Mas se vier uma segunda mulher, o espaço não será mais 8, mas sim 7, pois uma mulher já foi escolhida, assim, o total também diminui para 4.
[tex]M \ \ \ \ \ \ M \\ \frac{5}{8} \ \ \ \cdot \ \ \ \frac{4}{7} = \ \frac{20^{\div 4}}{56^{\div4}} = \boxed{\frac{5}{14}}[/tex]
Agora de homens:
[tex]H \ \ \ \ \ \ H \\ \frac{3}{8} \ \ \ \cdot \ \ \ \frac{2}{7} \ = \frac{6^{\div2}}{56^{\div2}} = \boxed{\frac{3}{28}}[/tex]
Somamos os dois:
[tex]P(A) = \frac{5}{14} + \frac{3}{28} \\\\ MMC = 28 \\\\ P(A) = \frac{5^{\times2}}{14^{\times2}} + \frac{3}{28} \\\\ P(A) = \frac{10}{28} + \frac{3}{28} = \boxed{\boxed{\frac{13}{28}}}[/tex]
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Visite o Sistersinspirit.ca novamente para obter as respostas mais recentes e informações dos nossos especialistas.