O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Se senФ=5/13 e Ф ∈ [3/4, ], calcule o valor de tg(2Ф)

Sagot :

Para facilitar na digitação:
Considere:
Ф = x
Raiz quadrada de um número = &(número)

Então:
tg(2Ф) = tg2x = sen2x/cos2x
sen(Ф) = senx = 5/13
Segundo as formulas de arco duplo:
sen2x = 2*senx*cosx
cos2x= (cosx)^2 - (senx)^2
Lembre-se:
Aplicando-se o teorema de pitágoras entre seno e sosseno, o resultado sera 1, pois é o valor do raio que é a hipotenusa, nesse caso:
(senx)^2 + (cosx)^2 = 1
(cosx)^2 = 1 - (senx)^2
cosx = &(1 - (senx)^2)

-Substituindo na fórmula do arco duplo, chegarás a isso:

Descobrindo o sen2x
sen2x = 2*senx*cosx
substituindo na fórmula cosx = &(1 - (senx)^2)
sen2x = 2*senx*&(1 - (senx)^2)
sen2x = 2*(5/13)*&(1 - (5/13)^2)
sen2x = (10/13)*&(1 - (25/169))
sen2x = (10/13)*&(144/169)
sen2x = (10/13)*(12/13)
sen2x = (120/169)

Descobrindo o cos2x
cos2x = (cosx)^2 - (senx)^2
substituindo na fórmula (cosx)^2 = 1 - (senx)^2
cos2x = 1 - (senx)^2 (senx)^2
cos2x = 1 -2(senx)^2
cos2x = 1 -2(5/13)^2
cos2x = 1 -2(25/169)
cos2x = 1 - (50/169)
cos2x = ((169 -50)/169)
cos2x = (119/169)

Re-lembrando
tg2x = sen2x/cos2x
Substituindo na fórmula sen2x = (120/169) e cos2x = (119/169)
tg2x = tg(2Ф) = (120/169)/(119/169) = (120/119)
Obs: Ф=x ∈ [3/4, ], isso quer dizer que dividindo uma circunferência em em 4 partes (quadrantes), ele estará no
3º quadrante (sentido anti-horário) e segundo o estudo da função tangente, f(X) = tg(X), f(X) > zero nos quadrantes 1 e 3
{0<X<π/2} e {π<X<3π/2]
"X" é diferente "x"
RESPOSTA: 
Então tg(2Ф) = +(120/119) = (120/119) =1,0084033613445378151260504201681