Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas.
Sagot :
igualando os termos da equação dada.
Para reconhecer uma circunferência é preciso levar em consideração a definição de uma equação do segundo grau com duas incógnitas, pois se observarmos uma equação normal ou reduzida da circunferência perceberemos que são exemplos desse tipo de equação.
Veja a forma geral de uma equação do segundo grau com duas incógnitas.
Ax2 + By2 + Cxy + Dx + Ey + F = 0
Nem todas as equações do segundo grau com duas incógnitas podem ser consideradas equações da circunferência, é preciso que seus coeficientes (A,B,C,D,E,F) obedeçam algumas condições, veja quais são elas:
É preciso saber que os coeficientes A, B, C, D, E, F pertencem ao conjunto dos reais e que A, B e C não são simultaneamente nulos.
• Os coeficientes A e B devem ser iguais e diferentes de zero (A=B ≠ 0)
• O coeficiente C dever ser igual à zero (C = 0).
• Em uma equação da circunferência escrita na sua forma reduzida, o valor do segundo membro da igualdade deverá ser um valor positivo: (x – a)2 + (y – b)2 = k; k > 0.
Exemplo: verifique se a equação x2 + 3y2 – 6x + 4y - 9 = 0 pode ser considerada uma equação da circunferência.
É preciso que verifiquemos todas as condições, mas nesse caso a primeira já elimina a possibilidade de ser uma equação da circunferência, pois os coeficientes de x2 e y2 são diferentes.
Exemplo: verifique se a equação x2– 6x - 4y +1 = 0 pode ser considerada uma equação da circunferência.
Nesse caso apenas a primeira condição elimina essa possibilidade, pois o coeficiente de y2 é igual a zero.
Exemplo: verifique se a equação -x2 - y2 + 8x -7 = 0 pode ser considerada uma equação da circunferência.
Essa equação será considerada uma equação da circunferência, pois satisfaz todas as condições:
• Os coeficientes de x2 e y2 são todos iguais e diferentes de zero.
• O coeficiente de xy é igual a zero.
• Passando a equação -x2 - y2 + 8x -7 = 0 para a forma reduzida iremos verificar a última condição:
-x2 - y2 + 8x -7 = 0 (-1)
x2 + y2 - 8x +7 = 0
(x2 - 8x) + (y2 +0y) = -7
(x2 - 8x + 16) + (y2 +0y) = -7 +16
(x2 - 8x + 16) + (y2 +0y + 0) = -7 +16 + 0
(x + 4)2 + (y + 0)2 = 9
Como 9 > 0, a equação representa uma circunferência.
Para reconhecer uma circunferência é preciso levar em consideração a definição de uma equação do segundo grau com duas incógnitas, pois se observarmos uma equação normal ou reduzida da circunferência perceberemos que são exemplos desse tipo de equação.
Veja a forma geral de uma equação do segundo grau com duas incógnitas.
Ax2 + By2 + Cxy + Dx + Ey + F = 0
Nem todas as equações do segundo grau com duas incógnitas podem ser consideradas equações da circunferência, é preciso que seus coeficientes (A,B,C,D,E,F) obedeçam algumas condições, veja quais são elas:
É preciso saber que os coeficientes A, B, C, D, E, F pertencem ao conjunto dos reais e que A, B e C não são simultaneamente nulos.
• Os coeficientes A e B devem ser iguais e diferentes de zero (A=B ≠ 0)
• O coeficiente C dever ser igual à zero (C = 0).
• Em uma equação da circunferência escrita na sua forma reduzida, o valor do segundo membro da igualdade deverá ser um valor positivo: (x – a)2 + (y – b)2 = k; k > 0.
Exemplo: verifique se a equação x2 + 3y2 – 6x + 4y - 9 = 0 pode ser considerada uma equação da circunferência.
É preciso que verifiquemos todas as condições, mas nesse caso a primeira já elimina a possibilidade de ser uma equação da circunferência, pois os coeficientes de x2 e y2 são diferentes.
Exemplo: verifique se a equação x2– 6x - 4y +1 = 0 pode ser considerada uma equação da circunferência.
Nesse caso apenas a primeira condição elimina essa possibilidade, pois o coeficiente de y2 é igual a zero.
Exemplo: verifique se a equação -x2 - y2 + 8x -7 = 0 pode ser considerada uma equação da circunferência.
Essa equação será considerada uma equação da circunferência, pois satisfaz todas as condições:
• Os coeficientes de x2 e y2 são todos iguais e diferentes de zero.
• O coeficiente de xy é igual a zero.
• Passando a equação -x2 - y2 + 8x -7 = 0 para a forma reduzida iremos verificar a última condição:
-x2 - y2 + 8x -7 = 0 (-1)
x2 + y2 - 8x +7 = 0
(x2 - 8x) + (y2 +0y) = -7
(x2 - 8x + 16) + (y2 +0y) = -7 +16
(x2 - 8x + 16) + (y2 +0y + 0) = -7 +16 + 0
(x + 4)2 + (y + 0)2 = 9
Como 9 > 0, a equação representa uma circunferência.
Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.