O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
Cara Nayara
A questão consiste em um arranjo simples, no qual um grupo é diferente de outro em razão da ordem ou da natureza dos elementos que o compõe.
Assim, a fórmula geral para esse tipo de cálculo é
An,p= n!
(n-p)!
Desse modo, o "n" consiste no número total de elemento, no caso 8 (todos os atletas que disputam a olimpíada) e o "p" é 3 (número de elementos escolhidos ou os três vencedores).
Substituindo na equação, temos
A8,3= 8!
(8-3)!
A8,3= 8!
5!
A8,3= 8*7*6*5! Simplifica-se o 5! do numerador com o do denominador.
5!
A8,3= 8*7*6
A8,3= 336.
Logo, há 336 resultados possíveis para os três primeiros colocados na prova.
A questão consiste em um arranjo simples, no qual um grupo é diferente de outro em razão da ordem ou da natureza dos elementos que o compõe.
Assim, a fórmula geral para esse tipo de cálculo é
An,p= n!
(n-p)!
Desse modo, o "n" consiste no número total de elemento, no caso 8 (todos os atletas que disputam a olimpíada) e o "p" é 3 (número de elementos escolhidos ou os três vencedores).
Substituindo na equação, temos
A8,3= 8!
(8-3)!
A8,3= 8!
5!
A8,3= 8*7*6*5! Simplifica-se o 5! do numerador com o do denominador.
5!
A8,3= 8*7*6
A8,3= 336.
Logo, há 336 resultados possíveis para os três primeiros colocados na prova.
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.