Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
[tex]Costumo \ resolver \ este \ tipo \ de \ problema \ atraves \ de \ um \\ determinante \ \ como\ sao\ 3 \ pontos\ devemos\ pensar\ na\ area\ de \\ um\ triangulo\\ A=\frac{1}{2} . modulo\ de\ \left[\begin{array}{ccc}-6&0\\3&3\\m^{2}&m+2\\-6&0\end{array}\right] =0 \ \ pois \\ para \ estarem \ alinhados \ deve \ ter \ area \ zero \\ \\ A = \frac{1}{2} {-18+3(m+2)+0 -0-3m^{2}+6(m+2)}\\ A = \frac{1}{2} {-18+3m+6) - 3m^{2}+6m +12)}\\ A = \frac{1}{2} {-12+3m - 3m^{2}+6m +12}\\ A = (1/2) {3m - 3m^{2}-6m }\\[/tex]
1/2 ( 9m - 3m^2 ) = 0 pois a área deve ser zero.
9m - 3m^2 = 0 dividindo tudo por -3
3m - m^2 = 0
m ( 3 - m ) = 0
m = 0 ou m=3
agora sim
Para saber se três pontos estão alinhados, usamos Determinante:
[tex]
\[\begin{vmatrix}
x_1 &y_1 &1 \\
x_2 &y_2 &1 \\
x_3 &y_3 &1
\end{vmatrix}=0\][/tex]
Substituindo:
[tex]
\[\begin{vmatrix}
{-6}&{0}&{1}\\
{3}&{3}&{1}\\
{m^2}&{m}&{1}
\end{vmatrix}=0\]
[/tex]
Resolvendo, encontramos:
[tex]-3m^2+9m=0[/tex]
Onde as raízes serão:
[tex]\boxed{m_1=0}[/tex]
[tex]\boxed{m_2=3}[/tex]
Esses são os pontos que deixara a reta alinhada. Não esqueça de dar a melhor resposta !
Abraços !
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.