lnne
Answered

O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

Alguém poderia me explicar sobre logaritmos?

Sagot :

vou tentar explicar com um exemplo:
log de 4 na base 2
quantos 2 eu preciso para chegar em 4, preciso de 2, então log de4 na base 2 é 2
espero ter ajudado!!


A palavra logaritmo foi inventada por John Napier. A sua origem é grega e significa a razão dos números – “logos” significa razão e “aritmo”, número. O inventor dos logaritmos, John Napier, também conhecido por Neper, nasceu na Escócia e viveu entre 1550 e 1617. Em 1614 Neper publicou o seu trabalho sobre logaritmos no livro “Descrição das Maravilhosas Regras dos Logaritmos” no qual expõe o uso dos logaritmos. 
A invenção dos logaritmos no século XVI é comparável ao aparecimento dos computadores no século XX - foi um grande salto na realização das operações aritméticas e representou para a astronomia e para a navegação algo muito próximo do que hoje o computador representa para essas mesmas áreas. 

Transformando os produtos em somas e os quocientes em diferenças, o uso dos logaritmos conseguiu diminuir em muito o tempo que os astrónomos gastavam nos seus cálculos. 

A ideia é bastante simples. Se for possível escrever dois números positivos quaisquer na forma de potências com a mesma base, então multiplicar esses números equivale a somar os expoentes respectivos. 

Considere-se uma tabela com duas linhas. Na segunda linha escrevemos, por exemplo, as potências de base 2. Na primeira linha escrevem-se os expoentes correspondentes a cada uma delas. Então, se quisermos multiplicar, por exemplo, os números 16 e 32, cujo produto é 512, podemos fazê-lo consultando a tabela. 16 e 32 podem escrever-se como potências de base 2, respectivamente, 2^4 e 2^5. Logo para multiplicar 16 por 32 basta somar 4 com 5. Ao resultado 9 = 4+5 corresponde na 2ª linha, o número 512, que é exactamente o produto de 16 por 32. 

É evidente que a questão de multiplicar números que não se traduzem por potências de expoente inteiro é hoje resolvida por calculadoras e computadores, instrumentos potentes que Napier não tinha à disposição. 


Teoria dos Logaritmos 

1. DEFINIÇÃO 

Sejam a e b números reais positivos diferentes de zero e b1. Chama-se logaritmo de a na base b o expoente x tal que bx = a: 
logb a = x bx = az 

Na sentença logb a = x temos: 

a) a é o logaritmando; 

b) b é a base do logaritmo; 

c) x é o logaritmo de a na base b. 

Exemplos: 



Observação 1: Quando a base não vier expressa, fica subentendido que esta vale 10. 

Exemplos: 

a) log 3 = log 10 3 

b) log 20 = log10 20 

Condições de existência 

a) A base tem de ser um número real positivo e diferente de 1. 

b) O logaritmando tem de ser um número real positivo. 


2. PROPRIEDADES DOS LOGARITMOS 

a) O logaritmo de um número, na base de valor igual a ele mesmo, é sempre igual a 1. 

logb b = 1. 

Exemplo: 
log8 8 = 1. 

b) O logaritmo de 1 em qualquer base é sempre igual a 0. 

logb 1 = 0 

Exemplo: 
log9 1 = 0 

c) Logaritmo de uma potência 

logb ay = y. logb a 

Exemplo: 
Log2 34 = 4. log2 3 

d) O logaritmo de um número b, na base b, elevado a um expoente x é sempre igual a x. 

logb bx = x 

Exemplo: 

Log3 37 = 7 

e) Um número b, elevado ao logaritmo de a na base b, é sempre igual a a. 

blogb a = a 

Exemplo: 

7log7 13 = 13 

f) Logaritmo do produto: 

logc (m . n) = logc m + logc n, sendo m > 0, n > 0 e b 1. 

Exemplo: 
log2 (4 . 3) = log2 4 + log2 3