Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Calcule a soma dos 30 primeiros termos da PA (a1, a2, a3, ...), sabendo que a7+a24 = 400

Sagot :

Numa PA, quando somamos termos equidistantes (que tem a mesma distância) o resultado é sempre o mesmo. Observe essa PA, por exemplo.

-8, -2, 4, 10 ,16 

-8 + 16 = 8
-2 + 10 = 8 

Na sua PA, a1, a2, a3, a4, a5, a6, ......., a29, a30

a1 + a30 = ? 
a2 + a29 = ? 
a3 + a28 = ? 
a4 + a27 = ? 
a5 + a26 = ? 
a6 + a25 = ? 
a7 + a24 = 400 

Todas essas somas terão o mesmo valor já que os termos são equidistantes. 

Descobrimos a soma dos termos de uma PA através da fórmula:

[tex]\frac{Sn = (a1 + an) n}{2} [/tex]

No seu caso, vimos que a1 + a30 é equivalente a a7 + a24, logo a soma entre a1 e a3 também será 400.

Sabendo que "an" representa o último termo da PA, substituímos an por a30,. já que a PA tem 30 termos. Fica assim:

[tex] \frac{Sn = (a1 + a30) 30}{2} [/tex]

Se a1 + a30 é igual à 400, substituímos na equação " a1 + a30" por 400, ficando assim:

[tex] \frac{Sn = (400) 30}{2} [/tex]

Resolvendo:

[tex] \frac{Sn = 12000}{2} [/tex]

Sn = 6000

A soma dos 30 primeiros termos dessa PA é 600.

Espero ter ajudado, beijos ;) 
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.