O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
Usarei a formula de arco duplo: cos(2x) = cos²(x)– sen²(x) e também usarei a equação fundamental: sen²(x) + cos²(x) = 1, eu já vou isolar o sen²(x) porque vou precisar substituir depois na formula de ardo duplo, então ficará sen²(x) = 1 - cos²(x);
Agora vamos a equação e determinar que cos é esse:
2*cos²(x) + cos(2x) > 2 => 2*cos²(x) + cos²(x) - sen²(x) > 2 => 2*cos²(x) + cos²(x)-(1-cos²(x)) => 2*cos²(x)+cos²(x)-1-cos²(x) > 2 => 4*cos²(x) > 2+1 => 4*cos²(x) > 3 => cos²(x) > 3/4 => cos(x) > [tex] \sqrt{\frac{3}{4}} [/tex]
cos(x) = [tex] \sqrt{\frac{3}{4}} [/tex] ou cos(x) = [tex] -\sqrt{\frac{3}{4}} [/tex]
Que cos é esse? sabemos que [tex] \sqrt{\frac{3}{4}} [/tex] é cos de 30º!
Logo o conjunto solução na inequação que se pede 0 < x < π é:
S = { x E R | 0 < x < π/6 ou 5π/6 < x < π }
de 0 a 30º ou de 150º a 180º, basta você desenha isso, porque cos 150º = [tex]-\sqrt{ \frac{3}{2} }[/tex] e cos 30º é [tex] \sqrt{ \frac{3}{2} } [/tex]
I hope you like it
Agora vamos a equação e determinar que cos é esse:
2*cos²(x) + cos(2x) > 2 => 2*cos²(x) + cos²(x) - sen²(x) > 2 => 2*cos²(x) + cos²(x)-(1-cos²(x)) => 2*cos²(x)+cos²(x)-1-cos²(x) > 2 => 4*cos²(x) > 2+1 => 4*cos²(x) > 3 => cos²(x) > 3/4 => cos(x) > [tex] \sqrt{\frac{3}{4}} [/tex]
cos(x) = [tex] \sqrt{\frac{3}{4}} [/tex] ou cos(x) = [tex] -\sqrt{\frac{3}{4}} [/tex]
Que cos é esse? sabemos que [tex] \sqrt{\frac{3}{4}} [/tex] é cos de 30º!
Logo o conjunto solução na inequação que se pede 0 < x < π é:
S = { x E R | 0 < x < π/6 ou 5π/6 < x < π }
de 0 a 30º ou de 150º a 180º, basta você desenha isso, porque cos 150º = [tex]-\sqrt{ \frac{3}{2} }[/tex] e cos 30º é [tex] \sqrt{ \frac{3}{2} } [/tex]
I hope you like it
Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.