O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

O gráfico do movimento de subida e descida de uma rolha, na superfície de um lago ondulado, é mostrado na figura a seguir, em que y é a altura da rolha em relação ao nível da água parada e t é o tempo transcorrido. Se a rolha leva 1,0 s para sair do nível zero e atingir, pela primeira vez, a altura máxima, a frequência do movimento é igual a:
 a) 0.125 Hz
 b) 0.25 Hz
c) 0.50 Hz
d) 1.0 Hz
e) 4.0 Hz


O Gráfico Do Movimento De Subida E Descida De Uma Rolha Na Superfície De Um Lago Ondulado É Mostrado Na Figura A Seguir Em Que Y É A Altura Da Rolha Em Relação class=

Sagot :

Olá!

Lembrando que o período mede o tempo que leva para dar uma volta completa e é medido em segundos. Ele é o inverso da frequência.

[tex] T = \frac{1}{f} [/tex]

Observando a gráfica podemos saber que o periodo ou tempo, dado no eixo x, que tarda para completar uma volta inteira é 4 segundos, assumindo que cada quadrinho vale 1 segundo.

Então do enunciado sabemos que a rolha leva 1,0 s para sair do nível zero e atingir, pela primeira vez, a altura máxima.

Assim substituindo os dados na formula do periodo e isolando a frequência, temos que ela é:

[tex] 4\; s = \frac{1}{f} \\\\
f = \frac{1}{4\; s}\\\\
f = 0,25 Hz [/tex]

Assim a alternativa correta é: b) 0.25 Hz

Olá,

Sabemos que a frequência é dada pela quantidade de ciclos por unidade de tempo.

Logo nosso primeiro passo aqui será identificar no gráfico qual o tempo para que a curva complete seu primeiro ciclo.

A questão descreve que a rolha leva 1 segundo de sair do 0, até o pico da onda, ou seja, analisando o gráfico, cada quadrado tem lado de 1 unidade.

Sabendo que a onda do gráfico completa um ciclo no 4° quadrado, sabemos que ela demora 4 segundos para completar um ciclo.

Logo teremos:

[tex] f=\frac{C}{s}\\ \\ f=\frac{1}{4}=0,25 Hertz [/tex]

Resposta: Letra B).

Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.