O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

O gráfico do movimento de subida e descida de uma rolha, na superfície de um lago ondulado, é mostrado na figura a seguir, em que y é a altura da rolha em relação ao nível da água parada e t é o tempo transcorrido. Se a rolha leva 1,0 s para sair do nível zero e atingir, pela primeira vez, a altura máxima, a frequência do movimento é igual a:
 a) 0.125 Hz
 b) 0.25 Hz
c) 0.50 Hz
d) 1.0 Hz
e) 4.0 Hz


O Gráfico Do Movimento De Subida E Descida De Uma Rolha Na Superfície De Um Lago Ondulado É Mostrado Na Figura A Seguir Em Que Y É A Altura Da Rolha Em Relação class=

Sagot :

Olá!

Lembrando que o período mede o tempo que leva para dar uma volta completa e é medido em segundos. Ele é o inverso da frequência.

[tex] T = \frac{1}{f} [/tex]

Observando a gráfica podemos saber que o periodo ou tempo, dado no eixo x, que tarda para completar uma volta inteira é 4 segundos, assumindo que cada quadrinho vale 1 segundo.

Então do enunciado sabemos que a rolha leva 1,0 s para sair do nível zero e atingir, pela primeira vez, a altura máxima.

Assim substituindo os dados na formula do periodo e isolando a frequência, temos que ela é:

[tex] 4\; s = \frac{1}{f} \\\\
f = \frac{1}{4\; s}\\\\
f = 0,25 Hz [/tex]

Assim a alternativa correta é: b) 0.25 Hz

Olá,

Sabemos que a frequência é dada pela quantidade de ciclos por unidade de tempo.

Logo nosso primeiro passo aqui será identificar no gráfico qual o tempo para que a curva complete seu primeiro ciclo.

A questão descreve que a rolha leva 1 segundo de sair do 0, até o pico da onda, ou seja, analisando o gráfico, cada quadrado tem lado de 1 unidade.

Sabendo que a onda do gráfico completa um ciclo no 4° quadrado, sabemos que ela demora 4 segundos para completar um ciclo.

Logo teremos:

[tex] f=\frac{C}{s}\\ \\ f=\frac{1}{4}=0,25 Hertz [/tex]

Resposta: Letra B).

Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.