Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Explore milhares de perguntas e respostas de uma comunidade de especialistas dispostos a ajudar você a encontrar soluções. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.

Um instituto de pesquisas entrevistou 1000 indivíduos, perguntando sua rejeição aos partidos A e B. Verificou-se que 600 pessoas rejeitavam o partido A que 500 pessoas rejeitavam o partido B e que 200 pessoas não rejeitavam nenhum partido. O numero de indivíduos que rejeitavam os dois partidos é a)120  b)200  c-250 d)300  e)800



Sagot :

Celio
Olá, Eduarda.

Se 1.000 pessoas foram entrevistadas e 200 pessoas não rejeitam nenhum dos dois partidos, então 1.000 - 200 = 800 pessoas rejeitam A ou B ou os dois.
Temos, portanto, que o número de elementos de A U B é igual a 800, ou seja, n(A U B) = 800.
O problema nos informa que n(A) = 600 e que n(B) = 500 e pede que calculemos quantas pessoas rejeitam os dois, ou seja, n(A ∩ B).
A fórmula do número de elementos da união de dois conjuntos quaisquer A e B é dada por:

n(A U B) = n(A) + n(B) - n(A ∩ B) 

800 = 600 + 500 - n(A ∩ B) 
n(A ∩ B) = 1.100 - 800 ⇒
n(A ∩ B) = 300

Resposta: 300 pessoas rejeitam os dois partidos
1000-200=800


500-x+x+600-x=800

-x+1100=800

-x=800-1100

-x=-300.(-1)

x=300 pessoas


letra D

espero ter ajudado!

boa tarde!
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.