Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.
Sagot :
Olá, Eduarda.
Se 1.000 pessoas foram entrevistadas e 200 pessoas não rejeitam nenhum dos dois partidos, então 1.000 - 200 = 800 pessoas rejeitam A ou B ou os dois.
Temos, portanto, que o número de elementos de A U B é igual a 800, ou seja, n(A U B) = 800.
O problema nos informa que n(A) = 600 e que n(B) = 500 e pede que calculemos quantas pessoas rejeitam os dois, ou seja, n(A ∩ B).
A fórmula do número de elementos da união de dois conjuntos quaisquer A e B é dada por:
n(A U B) = n(A) + n(B) - n(A ∩ B) ⇒
800 = 600 + 500 - n(A ∩ B) ⇒
n(A ∩ B) = 1.100 - 800 ⇒
n(A ∩ B) = 300
Resposta: 300 pessoas rejeitam os dois partidos
Se 1.000 pessoas foram entrevistadas e 200 pessoas não rejeitam nenhum dos dois partidos, então 1.000 - 200 = 800 pessoas rejeitam A ou B ou os dois.
Temos, portanto, que o número de elementos de A U B é igual a 800, ou seja, n(A U B) = 800.
O problema nos informa que n(A) = 600 e que n(B) = 500 e pede que calculemos quantas pessoas rejeitam os dois, ou seja, n(A ∩ B).
A fórmula do número de elementos da união de dois conjuntos quaisquer A e B é dada por:
n(A U B) = n(A) + n(B) - n(A ∩ B) ⇒
800 = 600 + 500 - n(A ∩ B) ⇒
n(A ∩ B) = 1.100 - 800 ⇒
n(A ∩ B) = 300
Resposta: 300 pessoas rejeitam os dois partidos
1000-200=800
500-x+x+600-x=800
-x+1100=800
-x=800-1100
-x=-300.(-1)
x=300 pessoas
letra D
espero ter ajudado!
boa tarde!
500-x+x+600-x=800
-x+1100=800
-x=800-1100
-x=-300.(-1)
x=300 pessoas
letra D
espero ter ajudado!
boa tarde!
Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.